POJ——T 2299 Ultra-QuickSort

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ——T 2299 Ultra-QuickSort相关的知识,希望对你有一定的参考价值。

http://poj.org/problem?id=2299

Time Limit: 7000MS   Memory Limit: 65536K
Total Submissions: 62894   Accepted: 23442

Description

技术分享In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence 
9 1 0 5 4 ,

Ultra-QuickSort produces the output 
0 1 4 5 9 .

Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.

Input

The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.

Output

For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.

Sample Input

5
9
1
0
5
4
3
1
2
3
0

Sample Output

6
0

Source

 
 
树状数组+离散化求逆序对
 1 #include <algorithm>
 2 #include <cstring>
 3 #include <cstdio>
 4 
 5 using namespace std;
 6 
 7 const int N(500000);
 8 long long ans;
 9 int n,tr[N];
10 struct Node
11 {
12     int num,mark;
13 }a[N];
14 bool cmp(Node a,Node b)
15 {
16     if(a.num==b.num)
17         return a.mark>b.mark;
18     return a.num>b.num;
19 }
20 
21 #define lowbit(x) (x&((~x)+1))
22 inline void Update(int i,int x)
23 {
24     for(;i<=N;i+=lowbit(i)) tr[i]+=x;
25 }
26 inline int Query(int x)
27 {
28     int ret=0;
29     for(;x;x-=lowbit(x)) ret+=tr[x];
30     return ret;
31 }
32 
33 int main()
34 {
35     for(;scanf("%d",&n)&&n;ans=0)
36     {
37         memset(tr,0,sizeof(tr));
38         for(int i=1;i<=n;i++)
39             scanf("%d",&a[i].num),a[i].mark=i;
40         sort(a+1,a+n+1,cmp);
41         for(int i=1;i<=n;Update(a[i++].mark,1))
42             ans+=(long long)Query(a[i].mark);
43         printf("%lld\n",ans);
44     }
45     return 0;
46 }

 

以上是关于POJ——T 2299 Ultra-QuickSort的主要内容,如果未能解决你的问题,请参考以下文章

POJ2299题解(树状数组)

POJ 2299.Ultra-QuickSort

poj2299(归并排序求逆序对)

POJ 2299 Ultra-QuickSort

POJ2299 Ultra-QuickSort

poj2299 Ultra-QuickSort