TensorFlow学习笔记3——Placeholders and feed_dict

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了TensorFlow学习笔记3——Placeholders and feed_dict相关的知识,希望对你有一定的参考价值。

1. Placeholders

placeholders,顾名思义,就是占位的意思,举个例子:我们定义了一个关于x,y的函数 f(x,y)=2x+y,但是我们并不知道x,y的值,那么x,y就是等待确定的值输入的placeholders。

我们如下定义一个placeholders:

tf.placeholder(dtype, shape=None, name=None)

一个简单的实例如下:

1 a = tf.placeholder(tf.float32, shape=[3])
2 b = tf.constant([5, 5, 5], tf.float32)
3 c =a + b
4 with tf.Session() as sess:
5     print(sess.run(c, feed_dict={a: [1, 2, 3]}))

输出:

[ 6.  7.  8.]

看到那个 feed_dict 吗?顺理成章,我们接下来聊聊 feed_dict .

2. feed_dict

刚刚上面不是说“x,y就是等待确定的值输入的placeholders”吗?ok,我们就是通过feed_dict输入那个placeholders苦苦等待的确定的值。

再看一个例子:

1 # create Operations, Tensors, etc (using the default graph)
2 a = tf.add(2, 5)
3 b = tf.multiply(a, 3)
4 # start up a `Session` using the default graph
5 sess = tf.Session()
6 # define a dictionary that says to replace the value of `a` with 15
7 replace_dict = {a: 15}
8 # Run the session, passing in `replace_dict` as the value to `feed_dict`
9 sess.run(b, feed_dict=replace_dict) # returns 45

 

以上是关于TensorFlow学习笔记3——Placeholders and feed_dict的主要内容,如果未能解决你的问题,请参考以下文章

《TensorFlow实战Google深度学习框架(第二版)》学习笔记及书评

Tensorflow学习笔记3:TensorBoard可视化学习

TensorFlow学习笔记

tensorflow学习笔记一

tensorflow学习笔记一

tensorflow1.3 API学习笔记 1