机器学习实战精读--------决策树

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了机器学习实战精读--------决策树相关的知识,希望对你有一定的参考价值。

感觉自己像个学走路的孩子,每一步都很吃力和认真!


机器根据数据集创建规则,就是机器学习。

决策树:从数据集合中提取一系列规则,适用于探索式的知识发现。

决策树本质:通过一系列规则对数据进行分类的过程。

决策树算法核心:构建精度高,数据规模小的决策树。

ID3算法:此算法目的在于减少树的深度,但是忽略了叶子数目的研究。

C4.5算法:对ID3进行改进,对于预测变量的缺失值处理、剪枝技术、派生规则等方面作了较大改进,既适合分类,又适合回归。

香农熵:变量的不确定性越大,熵也就越大,把它搞清楚所需要的信息量也就越大。

基尼不纯度:一个随机事件变成它的对立事件的概率。



#coding:utf-8
from math import log
import operator

#创建数据
def createDataSet():
    dataSet = [[1, 1, ‘yes‘],
               [1, 1, ‘yes‘],
               [1, 0, ‘no‘],
               [0, 1, ‘no‘],
               [0, 1, ‘no‘]]
    labels = [‘no surfacing‘,‘flippers‘]
    #change to discrete values
    return dataSet, labels

#计算给定数据集的香农熵
def calcShannonEnt(dataSet):
    numEntries = len(dataSet)
	#输出列表的的长度 值为:5
    labelCounts = {}
    for featVec in dataSet: 
	#对二维数组进行遍历
        currentLabel = featVec[-1]
        #把每个子列表的最后一个元素赋值给currentLabel
        if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0
        #如果currentLabel 不在字典中,把字典的值设置为0
        # keys() 函数以列表返回一个字典所有的键。
        labelCounts[currentLabel] += 1
        #这一步是统计出现的次数,每次匹配到的话,把对应key的值加1
    #操作完以后labelCounts字典记录的是yes出现2次  no出现3次
    shannonEnt = 0.0
    for key in labelCounts:
        prob = float(labelCounts[key])/numEntries
        #prob是字典labelCounts每个key的比率
        shannonEnt -= prob * log(prob,2) 
		#log(x, 2) 表示以2为底的对数。
    return shannonEnt
	#熵数字越大,说明混合的数据越多


#按照给定特征划分数据集    
def splitDataSet(dataSet, axis, value):
	#dataSet:待划分的数据集;axis:划分数据集的特征;value:需要返回的特征的值
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            #如果featVec列表的特征值跟valve值一样
            reducedFeatVec = featVec[:axis] 
            #输出列表featVec开头到特征值的列表切片    
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet

#选择最好的数据集划分方式    
def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0]) - 1      #the last column is used for the labels
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0.0; bestFeature = -1
    for i in range(numFeatures):        #iterate over all the features
        featList = [example[i] for example in dataSet]#create a list of all the examples of this feature
        uniqueVals = set(featList)       #get a set of unique values
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)     
        infoGain = baseEntropy - newEntropy     #calculate the info gain; ie reduction in entropy
        if (infoGain > bestInfoGain):       #compare this to the best gain so far
            bestInfoGain = infoGain         #if better than current best, set to best
            bestFeature = i
    return bestFeature                      #returns an integer

def majorityCnt(classList):
    classCount={}
    for vote in classList:
        if vote not in classCount.keys(): classCount[vote] = 0
        classCount[vote] += 1
    sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

def createTree(dataSet,labels):
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) == len(classList): 
        return classList[0]#stop splitting when all of the classes are equal
    if len(dataSet[0]) == 1: #stop splitting when there are no more features in dataSet
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel = labels[bestFeat]
    myTree = {bestFeatLabel:{}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]       #copy all of labels, so trees don‘t mess up existing labels
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value),subLabels)
    return myTree    
                            
#使用决策树的分类函数    
def classify(inputTree,featLabels,testVec):
    firstStr = inputTree.keys()[0]
    secondDict = inputTree[firstStr]
    featIndex = featLabels.index(firstStr)
    key = testVec[featIndex]
    valueOfFeat = secondDict[key]
    if isinstance(valueOfFeat, dict): 
        classLabel = classify(valueOfFeat, featLabels, testVec)
    else: classLabel = valueOfFeat
    return classLabel

#使用pickle模块存储决策树    
def storeTree(inputTree,filename):
    import pickle
    fw = open(filename,‘w‘)
    pickle.dump(inputTree,fw)
    fw.close()
    
def grabTree(filename):
    import pickle
    fr = open(filename)
    return pickle.load(fr)
#coding:utf-8
import matplotlib as mpl
mpl.use(‘Agg‘)
import matplotlib.pyplot as plt

decisionNode = dict(boxstyle="sawtooth", fc="0.8")
leafNode = dict(boxstyle="round4", fc="0.8")
arrow_args = dict(arrowstyle="<-")

def getNumLeafs(myTree):
    numLeafs = 0
    firstStr = myTree.keys()[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__==‘dict‘:#test to see if the nodes are dictonaires, if not they are leaf nodes
            numLeafs += getNumLeafs(secondDict[key])
        else:   numLeafs +=1
    return numLeafs

def getTreeDepth(myTree):
    maxDepth = 0
    firstStr = myTree.keys()[0]
    secondDict = myTree[firstStr]
    for key in secondDict.keys():
        if type(secondDict[key]).__name__==‘dict‘:#test to see if the nodes are dictonaires, if not they are leaf nodes
            thisDepth = 1 + getTreeDepth(secondDict[key])
        else:   thisDepth = 1
        if thisDepth > maxDepth: maxDepth = thisDepth
    return maxDepth

def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    createPlot.ax1.annotate(nodeTxt, xy=parentPt,  xycoords=‘axes fraction‘,
             xytext=centerPt, textcoords=‘axes fraction‘,
             va="center", ha="center", bbox=nodeType, arrowprops=arrow_args )
    
def plotMidText(cntrPt, parentPt, txtString):
    xMid = (parentPt[0]-cntrPt[0])/2.0 + cntrPt[0]
    yMid = (parentPt[1]-cntrPt[1])/2.0 + cntrPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)

def plotTree(myTree, parentPt, nodeTxt):#if the first key tells you what feat was split on
    numLeafs = getNumLeafs(myTree)  #this determines the x width of this tree
    depth = getTreeDepth(myTree)
    firstStr = myTree.keys()[0]     #the text label for this node should be this
    cntrPt = (plotTree.xOff + (1.0 + float(numLeafs))/2.0/plotTree.totalW, plotTree.yOff)
    plotMidText(cntrPt, parentPt, nodeTxt)
    plotNode(firstStr, cntrPt, parentPt, decisionNode)
    secondDict = myTree[firstStr]
    plotTree.yOff = plotTree.yOff - 1.0/plotTree.totalD
    for key in secondDict.keys():
        if type(secondDict[key]).__name__==‘dict‘:#test to see if the nodes are dictonaires, if not they are leaf nodes   
            plotTree(secondDict[key],cntrPt,str(key))        #recursion
        else:   #it‘s a leaf node print the leaf node
            plotTree.xOff = plotTree.xOff + 1.0/plotTree.totalW
            plotNode(secondDict[key], (plotTree.xOff, plotTree.yOff), cntrPt, leafNode)
            plotMidText((plotTree.xOff, plotTree.yOff), cntrPt, str(key))
    plotTree.yOff = plotTree.yOff + 1.0/plotTree.totalD
#if you do get a dictonary you know it‘s a tree, and the first element will be another dict


def createPlot(inTree):
    fig = plt.figure(1, facecolor=‘white‘)
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)    #no ticks
    #createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses 
    plotTree.totalW = float(getNumLeafs(inTree))
    plotTree.totalD = float(getTreeDepth(inTree))
    plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;
    plotTree(inTree, (0.5,1.0), ‘‘)
    plt.savefig(‘trees.png‘)
‘‘‘
def createPlot():
    fig = plt.figure(1, facecolor=‘white‘)
	#创建第一张图,设置背景色是白色
    fig.clf()
    createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses 
    plotNode(‘a decision node‘, (0.5, 0.1), (0.1, 0.5), decisionNode)
    plotNode(‘a leaf node‘, (0.8, 0.1), (0.3, 0.8), leafNode)
    plt.savefig(‘trees.png‘)
‘‘‘
def retrieveTree(i):
    listOfTrees =[{‘no surfacing‘: {0: ‘no‘, 1: {‘flippers‘: {0: ‘no‘, 1: ‘yes‘}}}},
                  {‘no surfacing‘: {0: ‘no‘, 1: {‘flippers‘: {0: {‘head‘: {0: ‘no‘, 1: ‘yes‘}}, 1: ‘no‘}}}}
                  ]
    return listOfTrees[i]

 

技术分享

技术分享

技术分享

小结:


一、一棵最优决策树主要应解决以下三个问题:

 ① 生成最少数目的叶子节点

 ② 生成每个叶子节点的深度最小

 ③ 生成的决策树叶子节点最少且每个叶子节点深度最小

二、如果叶子节点只能增加少许信息,则可以删除该节点,将它并入到其它节点中去。

三、ID3算法无法直接处理数值型数据。

四、采用文本方式很难展示决策树,所以要用Matplotlib注解绘制树型图。


本文出自 “付炜超” 博客,谢绝转载!

以上是关于机器学习实战精读--------决策树的主要内容,如果未能解决你的问题,请参考以下文章

机器学习实战python3 决策树ID3

机器学习实战教程:决策树实战篇

机器学习实战笔记--决策树

机器学习实战--第三章决策树

《机器学习实战》-决策树

机器学习实战笔记(Python实现)-02-决策树