DEEP LEARNING 大满贯课程表

Posted 马兹

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了DEEP LEARNING 大满贯课程表相关的知识,希望对你有一定的参考价值。

 

Reinforcement Learning
post by ISH GIRWAN

Courses/Tutorials

Books

Blogs

I think you can take the UC Berkeley course instead of David Silver‘s course as it‘s more up to date. Additionally you can check Arthur Juliani‘s blog series, it‘s really good.

相关课程

Calculus One, Coursera, Jim Fowler 
Calculus Two, Coursera, Jim Fowler
Multivariable Calculus, Khan Academy, Grant Sanderson
Linear Algebra, MIT, Prof. Gilbert Strang (so mechanical..)
Coding the Matrix, Brown University, Philip Klein
Introduction to Probability, The Science of Uncertainty Edx, MIT, Joh Tsitsiklis
微积分, coursera, 吉姆·福勒
微积分, coursera, 吉姆·福勒
多元微积分, 汗学院, grant sanderson
线性代数, 麻省理工学院教授 吉尔伯特·斯特朗(所以机械..)
编码矩阵, 布朗大学, 菲利普·克莱因
介绍概率, 不确定的科学, 麻省理工学院, joh tsitsiklis

以下是比较旧的RL Course by David Silver 

UCL Course on RL
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

Advanced Topics  2015 (COMPM050/COMPGI13)

Reinforcement Learning

Contact: [email protected]

Video-lectures available here

Lecture 1: Introduction to Reinforcement Learning

Lecture 2: Markov Decision Processes

Lecture 3: Planning by Dynamic Programming

Lecture 4: Model-Free Prediction

Lecture 5: Model-Free Control

Lecture 6: Value Function Approximation

Lecture 7: Policy Gradient Methods

Lecture 8: Integrating Learning and Planning

Lecture 9: Exploration and Exploitation

Lecture 10: Case Study: RL in Classic Games


Easy21 assignment

Discussion and announcements: http://groups.google.com/group/csml-advanced-topics

Previous RL exam questions and answers

以上是关于DEEP LEARNING 大满贯课程表的主要内容,如果未能解决你的问题,请参考以下文章

Deep Learning and Reinforcement Learning Summer School 2018

如何使用TensorFlow为Windows Udacity Deep Learning课程设置学习环境(Windows)

课程一(Neural Networks and Deep Learning)总结:Logistic Regression

机器学习001 deeplearning.ai 深度学习课程 Neural Networks and Deep Learning 第一周总结

Deep Learning Nanodegree Foundation笔记第 1 课:课程计划

吴恩达-深度学习-课程笔记-1 Introduction to Deep Learning( Week 1)