Brackets (区间DP)

Posted 余生漫漫浪

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Brackets (区间DP)相关的知识,希望对你有一定的参考价值。

个人心得:今天就做了这些区间DP,这一题开始想用最长子序列那些套路的,后面发现不满足无后效性的问题,即(,)的配对

对结果有一定的影响,后面想着就用上一题的思想就慢慢的从小一步一步递增,后面想着越来越大时很多重复,应该要进行分割,

后面想想又不对,就去看题解了,没想到就是分割,还是动手能力太差,还有思维不够。

1 for(int j=0;j+i<ch.size();j++)
2                     {
3                     if(check(j,j+i))
4                         dp[j][j+i]=dp[j+1][j+i-1]+2;
5                         for(int m=j;m<=j+i;m++)
6                     dp[j][j+i]=max(dp[j][j+i],dp[j][m]+dp[m+1][j+i]);
7                     }

分割并一次求最大值。动态规划真的是一脸懵逼样,多思考,多瞎想吧,呼~

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cmath>
 4 #include<cstring>
 5 #include<iomanip>
 6 #include<string>
 7 #include<algorithm>
 8 using namespace std;
 9 int money[205];
10 int dp[205][205];
11 string ch;
12 const int inf=999999;
13 int check(int i,int j){
14     if((ch[i]==(&&ch[j]==))||(ch[i]==[&&ch[j]==]))
15         return 1;
16       return 0;
17 }
18 void init(){
19    for(int i=0;i<ch.size();i++)
20      for(int j=0;j<ch.size();j++)
21         dp[i][j]=0;
22 }
23 int main(){
24     int n,m;
25     while(getline(cin,ch,\n)){
26             if(ch=="end") break;
27             init();
28             for(int k=0;k<ch.size()-1;k++)
29                if(check(k,k+1))
30                dp[k][k+1]=2;
31                else
32                 dp[k][k+1]=0;
33                 for(int i=2;i<ch.size();i++)
34                {
35                    for(int j=0;j+i<ch.size();j++)
36                     {
37                     if(check(j,j+i))
38                         dp[j][j+i]=dp[j+1][j+i-1]+2;
39                         for(int m=j;m<=j+i;m++)
40                     dp[j][j+i]=max(dp[j][j+i],dp[j][m]+dp[m+1][j+i]);
41                     }
42 
43                }
44             cout<<dp[0][ch.size()-1]<<endl;
45     }
46     return 0;
47 }

 



以上是关于Brackets (区间DP)的主要内容,如果未能解决你的问题,请参考以下文章

POJ 1141 Brackets Sequence (区间DP)

POJ2955 Brackets(区间DP)

CF149D. Coloring Brackets[区间DP !]

[C - Brackets] 区间dp

POJ 2955 Brackets 区间dp

poj 2955 Brackets 括号匹配 区间dp