zoj——3557 How Many Sets II
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了zoj——3557 How Many Sets II相关的知识,希望对你有一定的参考价值。
Given a set S = {1, 2, ..., n}, number m and p, your job is to count how many set T satisfies the following condition:
- T is a subset of S
- |T| = m
- T does not contain continuous numbers, that is to say x and x+1 can not both in T
Input
There are multiple cases, each contains 3 integers n ( 1 <= n <= 109 ), m ( 0 <= m <= 104, m <= n ) and p ( p is prime, 1 <= p <= 109 ) in one line seperated by a single space, proceed to the end of file.
Output
Output the total number mod p.
Sample Input
5 1 11
5 2 11
Sample Output
5
6
题目大意:
给一个集合,一共n个元素,从中选取m个元素,满足选出的元素中没有相邻的元素,一共有多少种选法(结果对p取模1 <= p <= 10^9)
思路:
好像是裸题、、、、
用插板法求出组合数。既然是从n个数中选择m个数,那么剩下的数为n-m,那么可以产生n-m+1个空,这道题就变成了把m个数插到这n-m+1个空中有多少种方法,即C(n-m+1,m)%p
但是求乘法逆元的已经行不通了,因为这里我们不确定他给出的p是否为素数,这样我们就只能用卢卡斯定理了
卢卡斯定理不会的转:http://www.cnblogs.com/L-Memory/p/7352397.html
不要预处理了,因为我们这里p不知道,而且如果要处理的话就要开10^9*long long空间。
代码:
#include<cstdio> #include<cstring> #include<cstdlib> #include<iostream> #include<algorithm> #define ll long long using namespace std; ll t,n,m,p,ans; ll read() { ll x=0,f=1; char ch=getchar(); while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1; ch=getchar();} while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘; ch=getchar();} return x*f; } ll qpow(ll n,ll k,ll q) { ll res=1; while(k) { if(k&1) res=res*n%p; n=n*n%p; k>>=1; }return res; } ll c(ll n,ll m,ll p) { ll n1=1,m1=1; if(m>n) return 0; for(int i=1;i<=m;i++) m1=m1*i%p; for(int i=n-m+1;i<=n;i++) n1=n1*i%p; return n1*qpow(m1,p-2,p)%p; } ll lus(ll n,ll m,ll p) { if(m==0) return 1; return c(n%p,m%p,p)*lus(n/p,m/p,p)%p; } int main() { while(scanf("%lld%lld%lld",&n,&m,&p)!=EOF) { ans=lus(n-m+1,m,p); printf("%lld\\n",ans); } return 0; }
以上是关于zoj——3557 How Many Sets II的主要内容,如果未能解决你的问题,请参考以下文章