Parquet and ORC

Posted 大大的橙子

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Parquet and ORC相关的知识,希望对你有一定的参考价值。

http://dongxicheng.org/mapreduce-nextgen/columnar-storage-parquet-and-orc/

相比传统的行式存储引擎,列式存储引擎具有更高的压缩比,更少的IO操作而备受青睐(注:列式存储不是万能高效的,很多场景下行式存储仍更加高效),尤其是在数据列(column)数很多,但每次操作仅针对若干列的情景,列式存储引擎的性价比更高。

 

在互联网大数据应用场景下,大部分情况下,数据量很大且数据字段数目很多,但每次查询数据只针对其中的少数几行,这时候列式存储是极佳的选择,目前在开源实现中,最有名的列式存储引擎是Parquet和ORC,在最近一年内,它们都晋升为Apache顶级项目,可见它们的重要性。本文尝试比较这两种存储引擎。

Apache Parquet

源自于google Dremel系统(可下载论文参阅),Parquet相当于Google Dremel中的数据存储引擎,而Apache顶级开源项目Drill正是Dremel的开源实现。

Apache Parquet 最初的设计动机是存储嵌套式数据,比如Protocolbuffer,thrift,json等,将这类数据存储成列式格式,以方便对其高效压缩和编码,且使用更少的IO操作取出需要的数据,这也是Parquet相比于ORC的优势,它能够透明地将Protobuf和thrift类型的数据进行列式存储,在Protobuf和thrift被广泛使用的今天,与parquet进行集成,是一件非容易和自然的事情。 除了上述优势外,相比于ORC, Parquet没有太多其他可圈可点的地方,比如它不支持update操作(数据写成后不可修改),不支持ACID等。

Apache ORC

ORC(OptimizedRC File)存储源自于RC(RecordColumnar File)这种存储格式,RC是一种列式存储引擎,对schema演化(修改schema需要重新生成数据)支持较差,而ORC是对RC改进,但它仍对schema演化支持较差,主要是在压缩编码,查询性能方面做了优化。RC/ORC最初是在Hive中得到使用,最后发展势头不错,独立成一个单独的项目。Hive 1.x版本对事务和update操作的支持,便是基于ORC实现的(其他存储格式暂不支持)。ORC发展到今天,已经具备一些非常高级的feature,比如支持update操作,支持ACID,支持struct,array复杂类型。你可以使用复杂类型构建一个类似于parquet的嵌套式数据架构,但当层数非常多时,写起来非常麻烦和复杂,而parquet提供的schema表达方式更容易表示出多级嵌套的数据类型。

Parquet与ORC对比

技术分享
技术分享

以上是关于Parquet and ORC的主要内容,如果未能解决你的问题,请参考以下文章

Hive 的 ORCParquet 等列式存储的优点

Hive 的 ORCParquet 等列式存储的优点

万亿级日志与行为数据存储查询技术剖析——Hbase系预聚合方案Dremel系parquet列存储预聚合系Lucene系

parquet(2)读写

iceberg org.apache.iceberg.parquet.Parquet parquet file read

iceberg org.apache.iceberg.parquet.Parquet parquet file read