二分图匹配入门专题1K - Going Home hdu1533km匹配

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了二分图匹配入门专题1K - Going Home hdu1533km匹配相关的知识,希望对你有一定的参考价值。

On a grid map there are n little men and n houses. In each unit time, every little man can move one unit step, either horizontally, or vertically, to an adjacent point. For each little man, you need to pay a $1 travel fee for every step he moves, until he enters a house. The task is complicated with the restriction that each house can accommodate only one little man. 

Your task is to compute the minimum amount of money you need to pay in order to send these n little men into those n different houses. The input is a map of the scenario, a ‘.‘ means an empty space, an ‘H‘ represents a house on that point, and am ‘m‘ indicates there is a little man on that point. 
技术分享 
You can think of each point on the grid map as a quite large square, so it can hold n little men at the same time; also, it is okay if a little man steps on a grid with a house without entering that house.

InputThere are one or more test cases in the input. Each case starts with a line giving two integers N and M, where N is the number of rows of the map, and M is the number of columns. The rest of the input will be N lines describing the map. You may assume both N and M are between 2 and 100, inclusive. There will be the same number of ‘H‘s and ‘m‘s on the map; and there will be at most 100 houses. Input will terminate with 0 0 for N and M. 
OutputFor each test case, output one line with the single integer, which is the minimum amount, in dollars, you need to pay. 
Sample Input

2 2
.m
H.
5 5
HH..m
.....
.....
.....
mm..H
7 8
...H....
...H....
...H....
mmmHmmmm
...H....
...H....
...H....
0 0

Sample Out12


题意:输入一个n行m列的图,‘H’和‘m‘数目相等,从‘m’出发到‘H‘,走一步花费加1,问,在满足每个‘m‘都能走到‘H‘的情况下,求出
  总的最小花费。
思路:求最小匹配,我们可以转换思路,用一个总的值sum-最大匹配,就是我们要求的最小匹配,比如说,我们要求一个集和中的
最小值min,那么我们用一个max减去集合中每一个数,再求出集合的最大值max2,我们所求的min = max-max2。
   那么这道题中呢,只是把求最小值换为求最小和,我们同样可以用总和-最大和求得。(为什么让我想起了上次的最大子段和~~)
  这个思路转换过来后,它就是一个km模板的套路题了。
~~~早起鸟儿果然有虫吃,又get到一个新技能,自己这道题一开始求得最大匹配,后来发现无法求出最小匹配,参考了大佬的博客才知道
  可以建图的时候转换一下,不过最大的收获就是我的模板又得到了优化,之前是slack数组去存每一个不在交错树中的tmp值,最后还要
  进行比较得出最小常数d,现在呢,就完全不用了,我们直接定义一个全局d,每次dfs的时候都更新一遍,就不用像之前那样处理
  不在交错树中的slack值
    
#include<stdio.h>
#include<string.h>
#define N 110
#define INF 0x3f3f3f3f
int n,m;
char map[N][N];
int sumhome,summan;
int w[N][N],linker[N];
int lx[N],ly[N],visx[N],visy[N];
int ans,d,nx,ny;

struct node{
    int x,y;
};
node home[N],man[N];
int abs(int a)//取绝对值 
{
    if( a < 0)
        return -a;
    return a;
}
void Count()//编号 
{
    int i,j;
    sumhome = summan = 0;
    for(i = 1; i <= n; i ++)
        for(j = 1; j <= m; j ++)
        {
            if(map[i][j] == H)
            {
                home[++sumhome].x = i;
                home[sumhome].y = j;
            }    
            if(map[i][j] == m)
            {
                man[++summan].x = i;
                man[summan].y = j;
            }
        }
    return;    
}

void getmap()//建图 
{
    int i,j;
    nx = summan;
    ny = sumhome;
    for(i = 1; i <= nx; i ++)
        for(j = 1; j <= ny; j ++)
        {
            w[i][j] = abs(man[i].x - home[j].x)+abs(man[i].y - home[j].y);
        }
    return;
}

int dfs(int x)//完全匹配 
{
    int y,tmp;
    visx[x] = 1;
    for(y = 1; y <= ny; y ++)
    {
        if(!visy[y])
        {
            tmp = lx[x] + ly[y] - w[x][y];
            if(!tmp)
            {
                visy[y] = 1;
                if(linker[y] == -1||dfs(linker[y]))
                {
                    linker[y] = x;
                    return 1;
                }
            }
            else if(d > tmp)//取最小的不在增广轨中的常数d 
                d = tmp;
        }
    }
    return 0;
}

int KM()//求最小匹配 
{
    int sum,x,i,j;
    memset(linker,-1,sizeof(linker));
    memset(ly,0,sizeof(ly));
    for(i = 1; i <= nx; i ++)
        for(j = 1; j <= ny; j ++)
            w[i][j] = 100*100 - w[i][j];//极大值减去原来的值 
            
    for(i = 1; i <= nx; i ++)
        for(j = 1,lx[i] = -INF; j <= ny; j ++)
            if(lx[i] < w[i][j])
                lx[i] = w[i][j];//初始化为权值最大的边的权值 
                
    for(x = 1; x <= nx; x++)
    {
        while(1)
        {
            d = INF;//常数d每次都要进行初始化 
            memset(visx,0,sizeof(visx));//每次dfs都要进行更新 
            memset(visy,0,sizeof(visy));
            if(dfs(x))
                break;
            for(i = 1; i <= nx; i ++)
                if(visx[i])//在增广轨中的x点标减去常数d 
                    lx[i] -= d;
            for(i = 1; i <= ny; i ++)
                if(visy[i])//在增广轨中的y点标加上常数d 
                    ly[i] += d;
        }
    }
    sum = 0;
    for(i = 1; i <= ny; i ++)
        if(linker[i]!=-1)
            sum += w[linker[i]][i]; 
    sum = nx*100*100-sum;//总值-最大匹配,就是我们所求的最小匹配 
    return sum;
}

int main()
{
    int i,j;
    while(scanf("%d%d",&n,&m),(m+n)!=0)
    {
        getchar();
        for(i = 1; i <= n; i ++)
            scanf("%s",map[i]+1);
        Count();//对home,man进行编号 
        getmap();//得到带权值的图 
        ans = KM();//km算法 
        printf("%d\n",ans);//输出最小匹配 
    }
    return 0;
}

 


















以上是关于二分图匹配入门专题1K - Going Home hdu1533km匹配的主要内容,如果未能解决你的问题,请参考以下文章

POJ 2195 Going Home 二分图最小权值匹配

[ACM] HDU 1533 Going Home (二分图最小权匹配,KM算法)

二分图匹配入门专题1H - Marriage Media light oj 1184二分图最大匹配

二分图匹配入门专题1F - COURSES poj1469最大匹配--匈牙利算法模板题

二分图匹配入门专题1D - Matrix hdu2119最小顶点覆盖

二分图匹配入门专题1poj3686 km+思维建图