1Spark 2.1 源码编译支持CDH

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了1Spark 2.1 源码编译支持CDH相关的知识,希望对你有一定的参考价值。


目前CDH支持的spark版本都是1.x, 如果想要使用spark 2x的版本, 只能编译spark源码生成支持CDH的版本。

一、准备工作


找一台Linux主机, 由于spark源码编译会下载很多的第三方类库包, 因此需要主机能够联网。

1、安装Java, 配置环境变量, 版本为JDK1.7或者以上

export JAVA_HOME=/usr/java/default
export JRE_HOME=/usr/java/default/jre
export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib:$CLASSPATH
export PATH=$JAVA_HOME/bin:$PATH

2、安装Maven, 版本为3.3.9或者以上

export MAVEN_HOME=/usr/local/apache-maven-3.3.9
export PATH=$MAVEN_HOME/bin:$PATH

二、编译Spark的源码包

1、下载spark 2.1.0的源码包


技术分享
 

2、增加cdh的repository

解压spark的源码包,编辑pom.xml文件, 在repositories节点 加入如下配置:
    <repository>
        <id>cloudera</id>
        <url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
    </repository>
技术分享
 
 

3、开始编译

./dev/make-distribution.sh --name 2.6.0-cdh5.7.0 --tgz  -Pyarn -Phadoop-2.6 -Phive -Phive-thriftserver -Dhadoop.version=2.6.0-cdh5.7.0

在编译过程中, 可能会出现各种莫名其妙的原因导致中断, 只需要重新执行上面的编译命令即可, 第一编译可能需要几个小时,第一次编译成功后, 后面再编译就很快了。

编译成功后, 可以看到如下:
技术分享
 

编译成功后, 可以看到生成了tar包:
技术分享
 

三、测试


1、提交到yarn上面

技术分享
 
需要配置HADOOP_CONF_DIR或者YARN_CONF_DIR环境变量:
# export HADOOP_CONF_DIR=/etc/hadoop/conf
技术分享
 
val file=spark.sparkContext.textFile("/tmp/appveyor.yml")
val wc = file.flatMap(line => line.split(",")).map(word=>(word,1)).reduceByKey(_ + _)
技术分享
 

2、访问hive的表

需要将hive的hive-site.xml复制到spark的conf目录下面。
scala> spark.sql("select * from iot.tp").collect().foreach(println)
技术分享
 














































以上是关于1Spark 2.1 源码编译支持CDH的主要内容,如果未能解决你的问题,请参考以下文章

编译支持 spark 读写 oss(cdh 5.x)

flume系列之:源码编译添加阿里源和CDH仓库

编译hadoop2.6.0 cdh 5.4.5 集成snappy压缩

tengine-2.3编译源码加入lua支持---Centos

编译HBase1.0.0-cdh5.4.2版本

CDH 中为spark 安装 python3