洛谷——P1082 同余方程

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了洛谷——P1082 同余方程相关的知识,希望对你有一定的参考价值。

P1082 同余方程

题目描述

求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解。

输入输出格式

输入格式:

 

输入只有一行,包含两个正整数 a, b,用一个空格隔开。

 

输出格式:

 

输出只有一行,包含一个正整数 x0,即最小正整数解。输入数据保证一定有解。

 

输入输出样例

输入样例#1:
3 10
输出样例#1:
7

说明

【数据范围】

对于 40%的数据,2 ≤b≤ 1,000;

对于 60%的数据,2 ≤b≤ 50,000,000;

对于 100%的数据,2 ≤a, b≤ 2,000,000,000。

NOIP 2012 提高组 第二天 第一题

 

思路:

裸地扩展欧几里得

扩展欧几里得(求同余方程)
应用性质:
对于不完全为0的整数a,b存在a*x+b*y==gcd(a,b)
化简式子:
使a为两数中较大的数
当b==0时,gcd(a,b)==gcd(a,0)==a
所以当b==0时,x==1,y==0
同时,ax+by==gcd(a,b),bx1+a%by1==gcd(b,a%b)
所以,ax+by==bx1+(a-a/b*b)*y1;
ax+by==bx1+ay1-a/b*b*y1
ax+by==ay1+b(x1-a/b*y1)
即:
x==y1,y==x1-a/b*y1
由此可得出扩展欧几里得求x,y的递归式

代码:

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
int a,b,x,y,gcd;
int exgcd(int a,int b,int &x,int &y)
{
    if(b==0)
    {
        x=1,y=0;
        return a;
    }
    int r=exgcd(b,a%b,x,y),tmp;
    tmp=x,x=y,y=tmp-a/b*y;
    return r;
}
int read()
{
    int x=0,f=1; char ch=getchar();
    while(ch<0||ch>9){if(ch==-)f=-1; ch=getchar();}
    while(ch>=0&&ch<=9){x=x*10+ch-0; ch=getchar();}
    return x*f;
}
int main()
{
    a=read(),b=read();
    gcd=exgcd(a,b,x,y);
    while(x<0)
     x+=(b/gcd);
    printf("%d",x);
    return 0;
}

 

以上是关于洛谷——P1082 同余方程的主要内容,如果未能解决你的问题,请参考以下文章

洛谷 P1082 同余方程

洛谷 P1082 同余方程

洛谷 P1082 同余方程 题解

洛谷P1082同余方程

洛谷 P1082 同余方程

[NOIP2012] 提高组 洛谷P1082 同余方程