WeQuant交易策略—简单均线

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了WeQuant交易策略—简单均线相关的知识,希望对你有一定的参考价值。

简单双均线策略(Simple Moving Average)


策略介绍
简单双均线策略,通过一短一长(一快一慢)两个回看时间窗口收盘价的简单移动平均绘制两条均线,利用均线的交叉来跟踪价格的趋势。这里说的简单是指在求平均值的时候采用的是算术平均数(就是求和再除以总数),有些更为复杂的求平均值得方法,如加权移动平均,指数加权移动平均等等。我们这个策略只使用最基本的算术平均。移动平均线是股票趋势策略中最常见技术手段。

计算方法(以日频率举例)
N日移动平均(MA)的计算:
MA(N) = 最近N天的收盘价之和 / N

使用方法
我们选定一个短期一个长期两个时间窗口(如常见的5日和20日,10日和40日等等),分别绘制出短期和长期的简单移动平均线。短期均线要比长期均线更为敏感,变化更快。
(1) 当短期均线自下而上突破长期均线(或突破一定比例)时,产生买入信号
(2) 当短期均线自上而下跌破长期均线(或跌破一定比例时),产生卖出信号

优点
简单双均线策略计算很容易,看起来又一目了然,很容易帮助了解市场走势,使用效果较好,深受投资者的喜爱。

缺点
双均线对于趋势的行情跟踪的非常好,但是在震荡行情中表现较差。短均线和长均线可能会纠缠在一起,出现来回多次的假突破,甚至造成高买低卖的情况。

 

 

#!/usr/bin/env python
# -*- coding: utf-8 -*-

# 策略代码总共分为三大部分,1)PARAMS变量 2)initialize函数 3)handle_data函数
# 请根据指示阅读。或者直接点击运行回测按钮,进行测试,查看策略效果。

# 策略名称:简单双均线策略
# 策略详细介绍:https://wequant.io/study/strategy.simple_moving_average.html
# 关键词:价格突破、趋势跟踪。
# 方法:
# 1)计算一长一短两个时间窗口的价格均线
# 2)利用均线的突破来决定买卖

import numpy as np


# 阅读1,首次阅读可跳过:
# PARAMS用于设定程序参数,回测的起始时间、结束时间、滑点误差、初始资金和持仓。
# 可以仿照格式修改,基本都能运行。如果想了解详情请参考新手学堂的API文档。
PARAMS = {
    "start_time": "2017-02-01 00:00:00",  # 回测起始时间
    "end_time": "2017-08-01 00:00:00",  # 回测结束时间
    "slippage": 0.003,  # 此处“slippage"包含佣金(千二)+交易滑点(千一)
    "account_initial": {"huobi_cny_cash": 100000,
                      "huobi_cny_btc": 0},  # 设置账户初始状态
}


# 阅读2,遇到不明白的变量可以跳过,需要的时候回来查阅:
# initialize函数是两大核心函数之一(另一个是handle_data),用于初始化策略变量。
# 策略变量包含:必填变量,以及非必填(用户自己方便使用)的变量
def initialize(context):
    # 设置回测频率, 可选:"1m", "5m", "15m", "30m", "60m", "4h", "1d", "1w"
    context.frequency = "15m"
    # 设置回测基准, 比特币:"huobi_cny_btc", 莱特币:"huobi_cny_ltc", 以太坊:"huobi_cny_eth"
    context.benchmark = "huobi_cny_btc"
    # 设置回测标的, 比特币:"huobi_cny_btc", 莱特币:"huobi_cny_ltc", 以太坊:"huobi_cny_eth"
    context.security = "huobi_cny_btc"

    # 设置策略参数
    # 计算短线所需的历史bar数目,用户自定义的变量,可以被handle_data使用
    context.user_data.window_short = 5
    # 计算长线所需的历史bar数目,用户自定义的变量,可以被handle_data使用
    context.user_data.window_long = 20
    # 入场线, 用户自定义的变量,可以被handle_data使用
    context.user_data.enter_threshold = 0.00
    # 出场线, 用户自定义的变量,可以被handle_data使用
    context.user_data.exit_threshold = 0.00


# 阅读3,策略核心逻辑:
# handle_data函数定义了策略的执行逻辑,按照frequency生成的bar依次读取并执行策略逻辑,直至程序结束。
# handle_data和bar的详细说明,请参考新手学堂的解释文档。
def handle_data(context):
    # 获取历史数据, 取后window_long根bar
    hist = context.data.get_price(context.security, count=context.user_data.window_long, frequency=context.frequency)
    if len(hist.index) < context.user_data.window_long:
        context.log.warn("bar的数量不足, 等待下一根bar...")
        return
    # 计算短均线值
    close = np.array(hist["close"])
    short_mean = np.mean(hist["close"][-1 * context.user_data.window_short:])
    # 计算长均线值
    long_mean = np.mean(hist["close"][-1 * context.user_data.window_long:])

    # 价格上轨
    upper = long_mean + context.user_data.enter_threshold * long_mean
    # 价格下轨
    lower = long_mean - context.user_data.exit_threshold * long_mean

    context.log.info("当前 短期均线 = %s, 长期均线 = %s, 上轨 = %s, 下轨 = %s" % (short_mean, long_mean, upper, lower))

    # 短期线突破长期线一定比例,产生买入信号
    if short_mean > upper:
        context.log.info("短期均线穿越上轨,产生买入信号")
        if context.account.huobi_cny_cash >= HUOBI_CNY_BTC_MIN_ORDER_CASH_AMOUNT:
            # 有买入信号,且持有现金,则市价单全仓买入
            context.log.info("正在买入 %s" % context.security)
            context.log.info("下单金额为 %s 元" % context.account.huobi_cny_cash)
            context.order.buy_limit(context.security, quantity=str(context.account.huobi_cny_cash/close[-1]*0.98), price=str(close[-1]*1.02))
        else:
            context.log.info("现金不足,无法下单")
    # 短期线低于长期线一定比例,产生卖出信号
    elif short_mean < lower:
        context.log.info("短期均线穿越下轨,产生卖出信号")
        if context.account.huobi_cny_btc >= HUOBI_CNY_BTC_MIN_ORDER_QUANTITY:
            # 有卖出信号,且持有仓位,则市价单全仓卖出
            context.log.info("正在卖出 %s" % context.security)
            context.log.info("卖出数量为 %s" % context.account.huobi_cny_btc)
            context.order.sell_limit(context.security, quantity=str(context.account.huobi_cny_btc), price=str(close[-1]*0.98))
        else:
            context.log.info("仓位不足,无法卖出")
    else:
        context.log.info("无交易信号,进入下一根bar")

 

15m回测

技术分享

30m

技术分享

60m

技术分享

4h

技术分享

1d

技术分享

1w

技术分享

 

 

 

 

 

 

 

本策略采用了5小时和20小时均线来回测。
5小时均线 > 20小时均线 * (1+入场线),产生买入信号;
5小时均线 < 20小时均线 * (1-出场线),产生卖出信号。

这里入场线和出场线都设置为0,只要快线穿过慢线,就会产生交易信号。这样设置主要是因为我们采用小时为单位回测,希望抓住短期的价格波动,所以出入场线的设置要宽松一些,否则很难产生交易信号。如果以日为单位,希望捕捉大的趋势,则可以适当调大出入场线,使信号更加严格,只有当趋势确定形成时才交易,防止短期震荡产生干扰信号。
从回测结果可以看出,策略在判断行情,捕捉趋势上,十分成功,抓住了几波大幅的上涨,并且在下跌中能较早离场,锁定收益,最大回撤只有12%左右,远远好于基准。
由于虚拟货币市场波动很大,没有涨跌幅限制,所以暴涨暴跌可以在很短的时间内完成, 一天内的波动涨跌可以很大。所以本策略如果以日为单位,效果并不理想。策略没有跑赢基础,而且波动很大,在暴跌中反应迟缓,对市场变化不能及时做出反馈。

总结
简单双均线是一种简单而又有效的策略,逻辑清楚,买卖信号明确,非常适合初学者使用。在十分不稳定的虚拟货币市场,长周期(如日、周、月等)的均线滞后性明显,不适合用来产生买卖信号。

 


















以上是关于WeQuant交易策略—简单均线的主要内容,如果未能解决你的问题,请参考以下文章

WeQuant交易策略—EMA指标

WeQuant交易策略—NATR

WeQuant交易策略—ATR

WeQuant交易策略—KDJ

Python量化交易策略--双均线策略及代码

均线交易策略