最近邻分类

Posted 烟囱小巫hn

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了最近邻分类相关的知识,希望对你有一定的参考价值。

"""
================================
Nearest Neighbors Classification
================================

Sample usage of Nearest Neighbors classification.
It will plot the decision boundaries for each class.
"""
print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import neighbors, datasets

n_neighbors = 15

# import some data to play with
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features. We could
# avoid this ugly slicing by using a two-dim dataset
y = iris.target

h = .02 # step size in the mesh

# Create color maps
cmap_light = ListedColormap([\'#FFAAAA\', \'#AAFFAA\', \'#AAAAFF\'])
cmap_bold = ListedColormap([\'#FF0000\', \'#00FF00\', \'#0000FF\'])

for weights in [\'uniform\', \'distance\']:
# we create an instance of Neighbours Classifier and fit the data.
clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
clf.fit(X, y)

# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, x_max]x[y_min, y_max].
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure()
plt.pcolormesh(xx, yy, Z, cmap=cmap_light)

# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.title("3-Class classification (k = %i, weights = \'%s\')"
% (n_neighbors, weights))

plt.show()


以上是关于最近邻分类的主要内容,如果未能解决你的问题,请参考以下文章

使用 R 中的最近邻分类器分配类标签

无法腌制 Scikit 学习最近邻分类器 - 无法腌制实例方法对象

KNN分类器最近邻分类KD树KNN分类的最佳K值基于半径的最近邻分类器KNN多分类KNN多标签分类KNN多输出分类KNN分类的优缺点

KNN(最近邻)分类算法

matlab中的k最近邻分类器

⭐ (理论和代码相结合)KNN(最近邻)算法——分类问题和回归问题都能做的算法