《Deep Learning》(深度学习)是一本皆在帮助学生和从业人员进入机器学习领域的教科书,以开源的形式免费在网络上提供,
这本书是由学界领军人物 Ian Goodfellow、Yoshua Bengio 和 Aaron Courville 合力打造。
书籍原版英文目录:
Deep Learning
- Table of Contents
- Acknowledgements
- Notation
- 1 Introduction
- Part I: Applied Math and Machine Learning Basics
- 2 Linear Algebra
- 3 Probability and Information Theory
- 4 Numerical Computation
- 5 Machine Learning Basics
- Part II: Modern Practical Deep Networks
- 6 Deep Feedforward Networks
- 7 Regularization for Deep Learning
- 8 Optimization for Training Deep Models
- 9 Convolutional Networks
- 10 Sequence Modeling: Recurrent and Recursive Nets
- 11 Practical Methodology
- 12 Applications
- Part III: Deep Learning Research
- 13 Linear Factor Models
- 14 Autoencoders
- 15 Representation Learning
- 16 Structured Probabilistic Models for Deep Learning
- 17 Monte Carlo Methods
- 18 Confronting the Partition Function
- 19 Approximate Inference
- 20 Deep Generative Models
- Bibliography
- Index
来自机器之心的消息。
这本书的主题具体来说,是机器学习的一种,一种能够使计算机系统从经验和数据中得到提高的技术。深度学习是一种特定类型的机器学习,具有强大的能力和灵活性,它将大千世界表示为嵌套的层次概念体系(由较简单概念间的联系定义复杂概念、从一般抽象概括到高级抽象表示)。对于本书的结构,第一部分介绍基本的数学工具和机器学习的概念,第二部分介绍最成熟的深度学习算法,而第三部分讨论某些具有展望性的想法,它们被广泛地认为是深度学习未来的研究重点。
因此,本书从基础数学知识到各类深度方法全面而又深入地描述了深度学习的各个主题。译者们也相信开源此书 PDF 版的中文译文可以促进大家对深度学习的基础和前沿知识有进一步的理解,也相信通过开放高质量的专业书籍能做到先阅读后付费。
Deep Learning 中文版在 Github 开源,你可以直接前往阅读、下载,译者建议「读者可以以中文版为主、英文版为辅来阅读学习」。
更多细节请前往 Github,另外译者们依旧需要反馈意见,你可以在 Github 提交 issue,PDF 下载地址在这里,在线阅读在这里。
注意由于版权问题,在线中文Latex翻译版本不提供图片。