异步IO数据库队列缓存
Posted 林肯公园
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了异步IO数据库队列缓存相关的知识,希望对你有一定的参考价值。
同步与异步的性能区别
mport gevent def task(pid): """ Some non-deterministic task """ gevent.sleep(0.5) print(‘Task %s done‘ % pid) def synchronous(): for i in range(1,10): task(i) def asynchronous(): threads = [gevent.spawn(task, i) for i in range(10)] gevent.joinall(threads) print(‘Synchronous:‘) synchronous() print(‘Asynchronous:‘) asynchronous()
上面程序的重要部分是将task函数封装到Greenlet内部线程的gevent.spawn
。 初始化的greenlet列表存放在数组threads
中,此数组被传给gevent.joinall
函数,后者阻塞当前流程,并执行所有给定的greenlet。执行流程只会在 所有greenlet执行完后才会继续向下走。
遇到IO阻塞时会自动切换任务
from gevent import monkey; monkey.patch_all() import gevent from urllib.request import urlopen def f(url): print(‘GET: %s‘ % url) resp = urlopen(url) data = resp.read() print(‘%d bytes received from %s.‘ % (len(data), url)) gevent.joinall([ gevent.spawn(f, ‘https://www.python.org/‘), gevent.spawn(f, ‘https://www.yahoo.com/‘), gevent.spawn(f, ‘https://github.com/‘), ])
通过gevent实现单线程下的多socket并发
server:
import sys import socket import time import gevent from gevent import socket,monkey monkey.patch_all() def server(port): s = socket.socket() s.bind((‘0.0.0.0‘, port)) s.listen(500) while True: cli, addr = s.accept() gevent.spawn(handle_request, cli) def handle_request(s): try: while True: data = s.recv(1024) print("recv:", data) s.send(data) if not data: s.shutdown(socket.SHUT_WR) except Exception as ex: print(ex) finally: s.close() if __name__ == ‘__main__‘: server(8001)
client:
import socket HOST = ‘localhost‘ # The remote host PORT = 8001 # The same port as used by the server s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((HOST, PORT)) while True: msg = bytes(input(">>:"),encoding="utf8") s.sendall(msg) data = s.recv(1024) #print(data) print(‘Received‘, repr(data)) s.close()
论事件驱动与异步IO
事件驱动编程是一种编程范式,这里程序的执行流由外部事件来决定。它的特点是包含一个事件循环,当外部事件发生时使用回调机制来触发相应的处理。另外两种常见的编程范式是(单线程)同步以及多线程编程。
让我们用例子来比较和对比一下单线程、多线程以及事件驱动编程模型。下图展示了随着时间的推移,这三种模式下程序所做的工作。这个程序有3个任务需要完成,每个任务都在等待I/O操作时阻塞自身。阻塞在I/O操作上所花费的时间已经用灰色框标示出来了。
在单线程同步模型中,任务按照顺序执行。如果某个任务因为I/O而阻塞,其他所有的任务都必须等待,直到它完成之后它们才能依次执行。这种明确的执行顺序和串行化处理的行为是很容易推断得出的。如果任务之间并没有互相依赖的关系,但仍然需要互相等待的话这就使得程序不必要的降低了运行速度。
在多线程版本中,这3个任务分别在独立的线程中执行。这些线程由操作系统来管理,在多处理器系统上可以并行处理,或者在单处理器系统上交错执行。这使得当某个线程阻塞在某个资源的同时其他线程得以继续执行。与完成类似功能的同步程序相比,这种方式更有效率,但程序员必须写代码来保护共享资源,防止其被多个线程同时访问。多线程程序更加难以推断,因为这类程序不得不通过线程同步机制如锁、可重入函数、线程局部存储或者其他机制来处理线程安全问题,如果实现不当就会导致出现微妙且令人痛不欲生的bug。
在事件驱动版本的程序中,3个任务交错执行,但仍然在一个单独的线程控制中。当处理I/O或者其他昂贵的操作时,注册一个回调到事件循环中,然后当I/O操作完成时继续执行。回调描述了该如何处理某个事件。事件循环轮询所有的事件,当事件到来时将它们分配给等待处理事件的回调函数。这种方式让程序尽可能的得以执行而不需要用到额外的线程。事件驱动型程序比多线程程序更容易推断出行为,因为程序员不需要关心线程安全问题。
当我们面对如下的环境时,事件驱动模型通常是一个好的选择:
- 程序中有许多任务,而且…
- 任务之间高度独立(因此它们不需要互相通信,或者等待彼此)而且…
- 在等待事件到来时,某些任务会阻塞。
当应用程序需要在任务间共享可变的数据时,这也是一个不错的选择,因为这里不需要采用同步处理。
网络应用程序通常都有上述这些特点,这使得它们能够很好的契合事件驱动编程模型。
以上是关于异步IO数据库队列缓存的主要内容,如果未能解决你的问题,请参考以下文章
8-3:协程异步IO数据库rabbitMQ队列redis缓存
# 进程/线程/协程 # IO:同步/异步/阻塞/非阻塞 # greenlet gevent # 事件驱动与异步IO # SelectPollEpoll异步IO 以及selectors模块 # (示