Protobuf使用手册
Posted langqi250
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Protobuf使用手册相关的知识,希望对你有一定的参考价值。
Protobuf使用手册
第1章 定义.proto 文件
首先我们需要编写一个 proto 文件,定义我们程序中需要处理的结构化数据,在 protobuf 的术语中,结构化数据被称为 Message。proto 文件非常类似 java 或者 C 语言的数据定义,可以使用C或C++风格的注释。下面是一个proto文件的例子。
package tutorial;
option java_package = "com.example.tutorial"; option java_outer_classname = "AddressBookProtos";
message Person { required string name = 1; required int32 id = 2; // Unique ID number for this person. optional string email = 3;
enum PhoneType { MOBILE = 0; HOME = 1; WORK = 2; }
message PhoneNumber { required string number = 1; optional PhoneType type = 2 [default = HOME]; }
repeated PhoneNumber phone = 4; }
// Our address book file is just one of these. message AddressBook { repeated Person person = 1; } |
一个proto文件主要包含package定义、message定义和属性定义三个部分,还有一些可选项。
1.1 定义package
Package在c++中对应namespace。
对于Java,包声明符会变为java的一个包,除非在.proto文件中提供了一个明确有java_package。
1.2 定义message
Message在C++中对应class。Message中定义的全部属性在class中全部为private的。
Message的嵌套使用可以嵌套定义,也可以采用先定义再使用的方式。
Message的定义末尾可以采用java方式在不加“;”,也可以采用C++定义方式在末尾加上“;”,这两种方式都兼容,建议采用java定义方式。
向.proto文件添加注释,可以使用C/C++/java风格的双斜杠(//) 语法格式。
1.3 定义属性
属性定义分为四部分:标注+类型+属性名+属性顺序号+[默认值],其示意如下所示。
标注 |
类型 |
属性名 |
属性顺序号 |
[默认值] |
required |
string |
name |
= 1 |
[default=””]; |
其中属性名与C++和java语言类似,不再解释;下面分别对标注、类型和属性顺序号加以详细介绍。
其中包名和消息名以及其中变量名均采用java的命名规则——驼峰式命名法,驼峰式命名法规则见附件1。
1.3.1 标注
标注包括“required”、“optional”、“repeated”三种,其中
required表示该属性为必选属性,否则对应的message“未初始化”,debug模式下导致断言,release模式下解析失败;
optional表示该属性为可选属性,不指定,使用默认值(int或者char数据类型默认为0,string默认为空,bool默认为false,嵌套message默认为构造,枚举则为第一个)
repeated表示该属性为重复字段,可看作是动态数组,类似于C++中的vector。
如果为optional属性,发送端没有包含该属性,则接收端在解析式采用默认值。对于默认值,如果已设置默认值,则采用默认值,如果未设置,则类型特定的默认值为使用,例如string的默认值为””。
1.3.2 类型
Protobuf的属性基本包含了c++需要的所有基本属性类型。
protobuf属性 |
C++属性 |
java属性 |
备注 |
double |
double |
double |
固定8个字节 |
float |
float |
float |
固定4个字节 |
int32 |
int32 |
int32 |
使用变长编码,对于负数编码效率较低,如果经常使用负数,建议使用sint32 |
int64 |
int64 |
int64 |
使用变长编码,对于负数编码效率较低,如果经常使用负数,建议使用sint64 |
uint32 |
uint32 |
int |
使用变长编码 |
uint64 |
uint64 |
long |
使用变长编码 |
sint32 |
int32 |
int |
采用zigzag压缩,对负数编码效率比int32高 |
sint64 |
int64 |
long |
采用zigzag压缩,对负数编码效率比int64高 |
fixed32 |
uint32 |
int |
总是4字节,如果数据>2^28,编码效率高于unit32 |
fixed64 |
uint64 |
long |
总是8字节,如果数据>2^56,编码效率高于unit32 |
sfixed32 |
int32 |
int |
总是4字节 |
sfixed64 |
int64 |
long |
总是8字节 |
bool |
bool |
boolean |
|
string |
string |
String |
一个字符串必须是utf-8编码或者7-bit的ascii编码的文本 |
bytes |
string |
ByteString |
可能包含任意顺序的字节数据 |
1.3.2.1 Union类型定义
Protobuf没有提供union类型,如果希望使用union类型,可以采用enum和optional属性定义的方式。
例如,如果已经定义了Foo、Bar、Baz等message,则可以采用如下定义。
message OneMessage { enum Type { FOO = 1; BAR = 2; BAZ = 3; } // Identifies which field is filled in. required Type type = 1; // One of the following will be filled in. optional Foo foo = 2; optional Bar bar = 3; optional Baz baz = 4; } |
1.3.3 属性顺序号
属性顺序号是protobuf为了提高数据的压缩和可选性等功能定义的,需要按照顺序进行定义,且不允许有重复。
1.4 其它可选项
Protocol Buffer允许我们在.proto文件中定义一些常用的选项,这样可以指示Protocol Buffer编译器帮助我们生成更为匹配的目标语言代码。Protocol Buffer内置的选项被分为以下三个级别:
- 文件级别,这样的选项将影响当前文件中定义的所有消息和枚举。
- 消息级别,这样的选项仅影响某个消息及其包含的所有字段。
- 字段级别,这样的选项仅仅响应与其相关的字段。
1.4.1 java_package可选项
java_package (file option): 是文件级别的选项,表明生成java类所在的包。如果在.proto文件中没有明确的声明java_package,就采用默认的包名。当然了,默认方式产生的 java包名并不是最好的方式,按照应用名称倒序方式进行排序的。如果不需要产生java代码,则该选项将不起任何作用。与此同时,生成的Java文件也将会自动存放到指定输出目录下的com/example/foo子目录中。如:
option java_package = "com.example.foo"; |
1.4.2 java_outer_classname可选项
java_outer_classname (file option): 是文件级别的选项,表明想要生成Java类的名称。如果在.proto文件中没有明确的java_outer_classname定义,生成的class名称将会根据.proto文件的名称采用驼峰式的命名方式进行生成。如(foo_bar.proto生成的java类名为FooBar.java),如果不生成java代码,则该选项不起任何作用。如:
option java_outer_classname = "Ponycopter"; |
注:主要是因为Java中要求同一个.java文件中只能包含一个Java外部类或外部接口,而C++则不存在此限制。因此在.proto文件中定义的消息均为指定外部类的内部类,这样才能将这些消息生成到同一个Java文件中。在实际的使用中,为了避免总是输入该外部类限定符,可以将该外部类静态引入到当前Java文件中,如:import static com.company.project.LYPhoneMessage.*。
1.4.3 *_generic_services可选项
cc_generic_services, java_generic_services, py_generic_services (file options): 在C++、java、python中protocol buffer编译器是否应该基于服务定义产生抽象服务代码。由于历史遗留问题,该值默认是true。但是自2.3.0版本以来,它被认为通过提供代码生成 器插件来对RPC实现更可取,而不是依赖于“抽象”服务。
// This file relies on plugins to generate service code. option cc_generic_services = false; option java_generic_services = false; option py_generic_services = false; |
1.4.4 message_set_wire_format可选项
message_set_wire_format (message option):如果该值被设置为true,该消息将使用一种不同的二进制格式来与Google内部的MessageSet的老格式相兼容。对于Google外部的用户来说,该选项将不会被用到。如下所示:
message Foo { option message_set_wire_format = true; extensions 4 to max; } |
1.4.5 import可选项
Import可选项用于包含其它proto文件中定义的message或enum类型等。标准格式如下
import “phonetype.proto”; |
使用时,import的文件必须与当前文件处于同一个文件夹下,protoc无法完成不处于同一个文件夹下的import选项。
1.4.6 optimize_for
optimize_for (fileoption): 是文件级别的选项,可以被设置为 SPEED, CODE_SIZE,or LITE_RUNTIME,缺省情况下是SPEED。这些值将通过如下的方式影响C++及java代码的生成:
SPEED (default): protocol buffer编译器将通过在消息类型上执行序列化、语法分析及其他通用的操作。这种代码是最优的。
CODE_SIZE: protocol buffer编译器将会产生最少量的类,通过共享或基于反射的代码来实现序列化、语法分析及各种其它操作。采用该方式产生的代码将比SPEED要少得多, 但是操作要相对慢些。当然实现的类及其对外的API与SPEED模式都是一样的。这种方式经常用在一些包含大量的.proto文件而且并不盲目追求速度的 应用中。
LITE_RUNTIME: protocol buffer编译器依赖于运行时核心类库来生成代码(即采用libprotobuf-lite 替代libprotobuf)。这种核心类库由于忽略了一 些描述符及反射,要比全类库小得多。这种模式经常在移动手机平台应用多一些。编译器采用该模式产生的方法实现与SPEED模式不相上下,产生的类通过实现 MessageLite接口,但它仅仅是Messager接口的一个子集。
option optimize_for = CODE_SIZE; |
1.4.7 packed
packed (field option): 如果该选项在一个整型基本类型上被设置为真,则采用更紧凑的编码方式。当然使用该值并不会对数值造成任何损失。在2.3.0版本之前,解析器将会忽略那些 非期望的包装值。因此,它不可能在不破坏现有框架的兼容性上而改变压缩格式。在2.3.0之后,这种改变将是安全的,解析器能够接受上述两种格式,但是在 处理protobuf老版本程序时,还是要多留意一下。
repeated int32 samples = 4 [packed=true]; |
1.4.8 default
[default = default_value]: optional类型的字段,如果在序列化时没有被设置,或者是老版本的消息中根本不存在该字段,那么在反序列化该类型的消息是,optional的字段将被赋予类型相关的缺省值,如bool被设置为false,int32被设置为0。Protocol Buffer也支持自定义的缺省值,如:
optional int32 result_per_page = 3 [default = 10]。 |
1.5 大数据量使用建议
在使用过程中发现,对于大数据量的协议报文(循环超过10000条),如果repeated修饰的属性为对象类型(诸如message 、Bytes、string等称为“对象类型”,其余的诸如int32、int64、float等等称为“原始类型”)时,效率非常低,而且占用的进程内存也非常大,建议采用如下方式优化。
1.5.1 repeated message类型
在message 中对repeated 标识的 message类型的字段需要做大量ADD操作时,可以考虑尽量避免嵌套message或者减少嵌套的message个数。
实例如下所示:
-> |
||
按行存取 |
按列存取 |
1.5.2 repeated raw类型
在message中对repeated 标识的原始数据类型的字段需要做大量ADD操作(例如超过3千)时,可以考虑预分配数据空间,避免重复大量地分配空间。
实例如下所示:
|
-> |
|
未预分配空间 |
预分配空间 |
1.5.3 repeated Bytes类型
在protobuf中,Bytes基于C++ STL中的string实现,因为string内存管理的原因,程序空间往往较大。所以应用如果有很多repeated Bytes类型的字段的话,进程显示耗用大量内存,这与vector<string>的情况基本一致。
1.6 Protocol Buffer消息升级原则
在实际的开发中会存在这样一种应用场景,既消息格式因为某些需求的变化而不得不进行必要的升级,但是有些使用原有消息格式的应用程序暂时又不能被立刻升级,这便要求我们在升级消息格式时要遵守一定的规则,从而可以保证基于新老消息格式的新老程序同时运行。规则如下:
1. 不要修改已经存在字段的标签号。
2. 任何新添加的字段必须是optional和repeated限定符,否则无法保证新老程序在互相传递消息时的消息兼容性。
3. 在原有的消息中,不能移除已经存在的required字段,optional和repeated类型的字段可以被移除,但是他们之前使用的标签号必须被保留,不能被新的字段重用。
4. int32、uint32、int64、uint64和bool等类型之间是兼容的,sint32和sint64是兼容的,string和bytes是兼容的,fixed32和sfixed32,以及fixed64和sfixed64之间是兼容的,这意味着如果想修改原有字段的类型时,为了保证兼容性,只能将其修改为与其原有类型兼容的类型,否则就将打破新老消息格式的兼容性。
5. optional和repeated限定符也是相互兼容的。
第2章 编译 .proto 文件
可以通过定义好的.proto文件来生成Java、Python、C++代码,需要基于.proto文件运行protocol buffer编译器protoc。运行的命令如下所示:
protoc --proto_path=IMPORT_PATH --cpp_out=DST_DIR --java_out=DST_DIR --python_out=DST_DIR path/to/file.proto |
MPORT_PATH声明了一个.proto文件所在的具体目录。如果忽略该值,则使用当前目录。如果有多个目录则可以 对--proto_path 写多次,它们将会顺序的被访问并执行导入。-I=IMPORT_PATH是它的简化形式。
当然也可以提供一个或多个输出路径:
--cpp_out 在目标目录DST_DIR中产生C++代码,可以在 http://code.google.com/intl/zh-CN/apis/protocolbuffers/docs/reference /cpp-generated.html中查看更多。
--java_out 在目标目录DST_DIR中产生Java代码,可以在 http://code.google.com/intl/zh-CN/apis/protocolbuffers/docs/reference /java-generated.html中查看更多。
--python_out 在目标目录 DST_DIR 中产生Python代码,可以在http://code.google.com/intl/zh-CN/apis/protocolbuffers /docs/reference/python-generated.html中查看更多。
作为一种额外的使得,如果DST_DIR 是以.zip或.jar结尾的,编译器将输出结果打包成一个zip格式的归档文件。.jar将会输出一个 Java JAR声明必须的manifest文件。注:如果该输出归档文件已经存在,它将会被重写,编译器并没有做到足够的智能来为已经存在的归档文件添加新的文 件。
你必须提供一个或多个.proto文件作为输入。多个.proto文件能够一次全部声明。虽然这些文件是相对于当前目录来命名的,每个文件必须在一个IMPORT_PATH中,只有如此编译器才可以决定它的标准名称。
第3章 使用message
3.1 类成员变量的访问
在生成的.h文件中定义了类成员的访问方法。例如,对于Person类,定义了name、id、email、phone等成员的访问方法。
获取成员变量值直接采用使用成员变量名(全部为小写),设置成员变量值,使用在成员变量名前加set_的方法。
对于普通成员变量(required和optional)提供has_方法判断变量值是否被设置;提供clear_方法清除设置的变量值。
对于string类型,提供多种set_方法,其参数不同。同时,提供了一个mutable_方法,返回变量值的可修改指针。
对于repeated变量,提供了其它一些特殊的方法:
l _size方法:返回repeated field’s
l 通过下脚标访问其中的数组成员组
l 通过下脚标返回其中的成员的mutable_的方法
l _add方法:增加一个成员。
// name inlinebool has_name()const; inlinevoid clear_name(); inlineconst::std::string& name()const; inlinevoid set_name(const::std::string& value); inlinevoid set_name(constchar* value); inline::std::string* mutable_name();
// id inlinebool has_id()const; inlinevoid clear_id(); inline int32_t id()const; inlinevoid set_id(int32_t value);
inlinebool has_email()const; inlinevoid clear_email(); inlineconst::std::string& email()const; inlinevoid set_email(const::std::string& value); inlinevoid set_email(constchar* value); inline::std::string* mutable_email();
// phone inlineint phone_size()const; inlinevoid clear_phone(); inlineconst::google::protobuf::RepeatedPtrField< ::tutorial::Person_PhoneNumber >& phone() const; inline::google::protobuf::RepeatedPtrField< ::tutorial::Person_PhoneNumber >* mutable_phone(); inlineconst::tutorial::Person_PhoneNumber& phone(int index)const; inline::tutorial::Person_PhoneNumber* mutable_phone(int index); inline::tutorial::Person_PhoneNumber* add_phone(); |
3.2 标准message方法
生成的.h文件中的class都继承自::google::protobuf::Message类,Message类提供了一些方法可以检查或者操作整个message,包括
l
bool IsInitialized() const;检查是否所有required变量都已经初始化;
l
string DebugString() const;返回message的可阅读的表示,主要用于调试程序;
l
void CopyFrom(const Person& from);使用一个message的值覆盖本message;
l void Clear();
清空message的所有成员变量值。
3.3 编码和解码函数
每个message类都提供了写入和读取message数据的方法,包括
l
bool SerializeToString(string* output) const;把message编码进output。
l
bool ParseFromString(const string& data);从string解码到message
l
bool SerializeToArray(char* buf,int size) const;把message编码进数组buf.
l
bool ParseFromArray(const char* buf,int size);把buf解码到message
。此解码方法效率较
ParseFromString
高很多,所以一般用这种方法解码。
l bool SerializeToOstream(ostream* output) const;
把message编码进ostream
l bool ParseFromIstream(istream* input);
从istream解码到message
备注:发送接收端所使用的加码解码方法不一定非得配对,即发送端用SerializeToString 接收端不一定非得用ParseFromString ,可以使用其他解码方法。
3.4 简单message生成的C++代码
这里先定义一个最简单的message,其中只是包含原始类型的字段。
option optimize_for = LITE_RUNTIME; message LogonReqMessage { required int64 acctID = 1; required string passwd = 2; } |
由于我们在MyMessage文件中定义选项optimize_for的值为LITE_RUNTIME,因此由该.proto文件生成的所有C++类的父类均为::google::protobuf::MessageLite,而非::google::protobuf::Message。MessageLite类是Message的父类,在MessageLite中将缺少Protocol Buffer对反射的支持,而此类功能均在Message类中提供了具体的实现。使用LITE版本的Protocol Buffer。这样不仅可以得到更高编码效率,而且生成代码编译后所占用的资源也会更少,至于反射所能带来的灵活性和极易扩展性。下面我们来看一下由message LogonReqMessage生成的C++类的部分声明,以及常用方法的说明性注释。
class LogonReqMessage : public ::google::protobuf::MessageLite { public: LogonReqMessage(); virtual ~LogonReqMessage();
// implements Message ---------------------------------------------- //下面的成员函数均实现自MessageLite中的虚函数。 //创建一个新的LogonReqMessage对象,等同于clone。 LogonReqMessage* New() const; //用另外一个LogonReqMessage对象初始化当前对象,等同于赋值操作符重载(operator=) void CopyFrom(const LogonReqMessage& from); //清空当前对象中的所有数据,既将所有成员变量置为未初始化状态。 void Clear(); //判断当前状态是否已经初始化。 bool IsInitialized() const; //在给当前对象的所有变量赋值之后,获取该对象序列化后所需要的字节数。 int ByteSize() const; //获取当前对象的类型名称。 ::std::string GetTypeName() const;
// required int64 acctID = 1; //下面的成员函数都是因message中定义的acctID字段而生成。 //这个静态成员表示AcctID的标签值。命名规则是k + FieldName(驼峰规则) + FieldNumber。 static const int kAcctIDFieldNumber = 1; //如果acctID字段已经被设置返回true,否则false。 inline bool has_acctid() const; //执行该函数后has_acctid函数将返回false,而下面的acctid函数则返回acctID的缺省值。 inline void clear_acctid(); //返回acctid字段的当前值,如果没有设置则返回int64类型的缺省值。 inline ::google::protobuf::int64 acctid() const; //为acctid字段设置新值,调用该函数后has_acctid函数将返回true。 inline void set_acctid(::google::protobuf::int64 value);
// required string passwd = 2; //下面的成员函数都是因message中定义的passwd字段而生成。这里生成的函数和上面acctid //生成的那组函数基本相似。因此这里只是列出差异部分。 static const int kPasswdFieldNumber = 2; inline bool has_passwd() const; inline void clear_passwd(); inline const ::std::string& passwd() const; inline void set_passwd(const ::std::string& value); //对于字符串类型字段设置const char*类型的变量值。 inline void set_passwd(const char* value); inline void set_passwd(const char* value, size_t size); //可以通过返回值直接给passwd对象赋值。在调用该函数之后has_passwd将返回true。 inline ::std::string* mutable_passwd(); //释放当前对象对passwd字段的所有权,同时返回passwd字段对象指针。调用此函数之后,passwd字段对象 //的所有权将移交给调用者。此后再调用has_passwd函数时将返回false。 inline ::std::string* release_passwd(); private: ... ... }; |
下面是读写LogonReqMessage对象的C++测试代码和说明性注释。
void testSimpleMessage() { printf("==================This is simple message.================\\n"); //序列化LogonReqMessage对象到指定的内存区域。 LogonReqMessage logonReq; logonReq.set_acctid(20); logonReq.set_passwd("Hello World"); //提前获取对象序列化所占用的空间并进行一次性分配,从而避免多次分配 //而造成的性能开销。通过该种方式,还可以将序列化后的数据进行加密。 //之后再进行持久化,或是发送到远端。 int length = logonReq.ByteSize(); char* buf = new char[length]; logonReq.SerializeToArray(buf,length); //从内存中读取并反序列化LogonReqMessage对象,同时将结果打印出来。 LogonReqMessage logonReq2; logonReq2.ParseFromArray(buf,length); printf("acctID = %I64d, password = %s\\n",logonReq2.acctid(),logonReq2.passwd().c_str()); delete [] buf; } |
3.5 嵌套message生成的C++代码
enum UserStatus { OFFLINE = 0; ONLINE = 1; } enum LoginResult { LOGON_RESULT_SUCCESS = 0; LOGON_RESULT_NOTEXIST = 1; LOGON_RESULT_ERROR_PASSWD = 2; LOGON_RESULT_ALREADY_LOGON = 3; LOGON_RESULT_SERVER_ERROR = 4; } message UserInfo { required int64 acctID = 1; required string name = 2; required UserStatus status = 3; } message LogonRespMessage { required LoginResult logonResult = 1; required UserInfo userInfo = 2; //这里嵌套了UserInfo消息。 } |
对于上述消息生成的C++代码,UserInfo因为只是包含了原始类型字段,因此和上例中的LogonReqMessage没有太多的差别,这里也就不在重复列出了。由于LogonRespMessage消息中嵌套了UserInfo类型的字段,在这里我们将仅仅给出该消息生成的C++代码和关键性注释。
class LogonRespMessage : public ::google::protobuf::MessageLite { public: LogonRespMessage(); virtual ~LogonRespMessage();
// implements Message ---------------------------------------------- ... ... //这部分函数和之前的例子一样。
// required .LoginResult logonResult = 1; //下面的成员函数都是因message中定义的logonResult字段而生成。 //这一点和前面的例子基本相同,只是类型换做了枚举类型LoginResult。 static const int kLogonResultFieldNumber = 1; inline bool has_logonresult() const; inline void clear_logonresult(); inline LoginResult logonresult() const; inline void set_logonresult(LoginResult value);
// required .UserInfo userInfo = 2; //下面的成员函数都是因message中定义的UserInfo字段而生成。 //这里只是列出和非消息类型字段差异的部分。 static const int kUserInfoFieldNumber = 2; inline bool has_userinfo() const; inline void clear_userinfo(); inline const ::UserInfo& userinfo() const; //可以看到该类并没有生成用于设置和修改userInfo字段set_userinfo函数,而是将该工作 //交给了下面的mutable_userinfo函数。因此每当调用函数之后,Protocol Buffer都会认为 //该字段的值已经被设置了,同时has_userinfo函数亦将返回true。在实际编码中,我们可以 //通过该函数返回userInfo字段的内部指针,并基于该指针完成userInfo成员变量的初始化工作。 inline ::UserInfo* mutable_userinfo(); inline ::UserInfo* release_userinfo(); private: ... ... }; |
下面是读写LogonRespMessage对象的C++测试代码和说明性注释。
void testNestedMessage() { printf("==================This is nested message.================\\n"); LogonRespMessage logonResp; logonResp.set_logonresult(LOGON_RESULT_SUCCESS); //如上所述,通过mutable_userinfo函数返回userInfo字段的指针,之后再初始化该对象指针。 UserInfo* userInfo = logonResp.mutable_userinfo(); userInfo->set_acctid(200); userInfo->set_name("Tester"); userInfo->set_status(OFFLINE); int length = logonResp.ByteSize(); char* buf = new char[length]; logonResp.SerializeToArray(buf,length);
LogonRespMessage logonResp2; logonResp2.ParseFromArray(buf,length); printf("LogonResult = %d, UserInfo->acctID = %I64d, UserInfo->name = %s, UserInfo->status = %d\\n" ,logonResp2.logonresult(),logonResp2.userinfo().acctid(),logonResp2.userinfo().name().c_str(),logonResp2.userinfo().status()); delete [] buf; } |
3.6 repeated嵌套message生成的C++代码
message BuddyInfo { required UserInfo userInfo = 1; required int32 groupID = 2; } message RetrieveBuddiesResp { required int32 buddiesCnt = 1; repeated BuddyInfo buddiesInfo = 2; } |
对于上述消息生成的代码,我们将只是针对RetrieveBuddiesResp消息所对应的C++代码进行详细说明,其余部分和前面小节的例子基本相同,可直接参照。而对于RetrieveBuddiesResp类中的代码,我们也仅仅是对buddiesInfo字段生成的代码进行更为详细的解释。
class RetrieveBuddiesResp : public ::google::protobuf::MessageLite { public: RetrieveBuddiesResp(); virtual ~RetrieveBuddiesResp();
... ... //其余代码的功能性注释均可参照前面的例子。
// repeated .BuddyInfo buddiesInfo = 2; static const int kBuddiesInfoFieldNumber = 2; //返回数组中成员的数量。 inline int buddiesinfo_size() const; //清空数组中的所有已初始化成员,调用该函数后,buddiesinfo_size函数将返回0。 inline void clear_buddiesinfo(); //返回数组中指定下标所包含元素的引用。 inline const ::BuddyInfo& buddiesinfo(int index) const; //返回数组中指定下标所包含元素的指针,通过该方式可直接修改元素的值信息。 inline ::BuddyInfo* mutable_buddiesinfo(int index); //像数组中添加一个新元素。返回值即为新增的元素,可直接对其进行初始化。 inline ::BuddyInfo* add_buddiesinfo(); //获取buddiesInfo字段所表示的容器,该函数返回的容器仅用于遍历并读取,不能直接修改。 inline const ::google::protobuf::RepeatedPtrField< ::BuddyInfo >& buddiesinfo() const; //获取buddiesInfo字段所表示的容器指针,该函数返回的容器指针可用于遍历和直接修改。 inline ::google::protobuf::RepeatedPtrField< ::BuddyInfo >* mutable_buddiesinfo(); private: ... ... }; |
下面是读写RetrieveBuddiesResp对象的C++测试代码和说明性注释。
void testRepeatedMessage() { printf("==================This is repeated message.================\\n"); RetrieveBuddiesResp retrieveResp; retrieveResp.set_buddiescnt(2); BuddyInfo* buddyInfo = retrieveResp.add_buddiesinfo(); buddyInfo->set_groupid(20); UserInfo* userInfo = buddyInfo->mutable_userinfo(); userInfo->set_acctid(200); userInfo->set_name("user1"); userInfo->set_status(OFFLINE);
buddyInfo = retrieveResp.add_buddiesinfo(); buddyInfo->set_groupid(21); userInfo = buddyInfo->mutable_userinfo(); userInfo->set_acctid(201); userInfo->set_name("user2"); userInfo->set_status(ONLINE);
int length = retrieveResp.ByteSize(); char* buf = new char[length]; retrieveResp.SerializeToArray(buf,length);
RetrieveBuddiesResp retrieveResp2; retrieveResp2.ParseFromArray(buf,length); printf("BuddiesCount = %d\\n",retrieveResp2.buddiescnt()); printf("Repeated Size = %d\\n",retrieveResp2.buddiesinfo_size()); //这里仅提供了通过容器迭代器的方式遍历数组元素的测试代码。 //事实上,通过buddiesinfo_size和buddiesinfo函数亦可循环遍历。 RepeatedPtrField<BuddyInfo>* buddiesInfo = retrieveResp2.mutable_buddiesinfo(); RepeatedPtrField<BuddyInfo>::iterator it = buddiesInfo->begin(); for (; it != buddiesInfo->end(); ++it) { printf("BuddyInfo->groupID = %d\\n", it->groupid()); printf("UserInfo->acctID = %I64d, UserInfo->name = %s, UserInfo->status = %d\\n" , it->userinfo().acctid(), it->userinfo().name().c_str(),it->userinfo().status()); } delete [] buf; } |
3.7 简单message生成的Java代码
option java_package = "com.lsk.lyphone"; option java_outer_classname = "LYPhoneMessage"; option optimize_for = LITE_RUNTIME; message LogonReqMessage { required int64 acctID = 1; required string passwd = 2; } |
当前.proto文件中该选项的值为LITE_RUNTIME,因此由该.proto文件生成的所有Java类的父类均为com.google.protobuf.GeneratedMessageLite,而非com.google.protobuf.GeneratedMessage,同时与之对应的Builder类则均继承自com.google.protobuf.MessageLiteOrBuilder,而非com.google.protobuf.MessageOrBuilder。使用LITE版本的Protocol Buffer。这样不仅可以得到更高编码效率,而且生成代码编译后所占用的资源也会更少,至于反射所能带来的灵活性和极易扩展性。下面我们来看一下由message LogonReqMessage生成的Java类的部分声明,以及常用方法的说明性注释。
在做各种case的对比性分析之前必须要事先声明的是,Protocol Buffer针对Java语言所生成的代码和C++相比存在一个非常重要的差别,即为每个消息均会生成一个Builder接口和一个与消息对应的实现类,该实现类又将同时实现生成的Builder接口和扩展Protocol Buffer内置的GeneratedMessageLite(或GeneratedMessage)类。这一点对于Protocol Buffer而言,是巧妙的使用了设计模式中的Builder模式。换言之,对于所有消息字段的修改操作均需要通过与其对应的Builder接口辅助完成。相信我们会通过对下面用例的学习可以得到更为清楚的认识。
//用于修改LogonReqMessage消息字段的辅助Builder接口。 //该接口会为消息中的每个字段均提供getter和setter方法。 public interface LogonReqMessageOrBuilder extends com.google.protobuf.MessageLiteOrBuilder {
// required int64 acctID = 1; boolean hasAcctID(); long getAcctID();
// required string passwd = 2; boolean hasPasswd(); String getPasswd(); } //该类为final类,即不可以在被子类化了。这一点在Protocol Buffer的官方文档中给予了明确 //的说明,因为子类化将会破坏序列化和反序列化的过程。 public static final class LogonReqMessage extends com.google.protobuf.GeneratedMessageLite implements LogonReqMessageOrBuilder {
// Use LogonReqMessage.newBuilder() to construct. // 由于所有构造函数均为私有方法,由此可见,我们不能直接new LogonReqMessage的对象 // 实例,而是只能通过与其对应Builder来构造,或是直接通过反序列化的方式生成。 private LogonReqMessage(Builder builder) { super(builder); } //该静态方法为该类Builder接口的工厂方法。返回的Builder实现类在完成各个字段的 //初始化后,通过build()方法返回与其对应的消息实现类,即LogonReqMessage。 public static Builder newBuilder() { return Builder.create(); } //通过该类的对象获取与其对应的Builder类对象,一般用于通过Builder类完成消息字段的修改。 以上是关于Protobuf使用手册的主要内容,如果未能解决你的问题,请参考以下文章 前端开发必备!Emmet使用手册(转自 http://www.w3cplus.com/tools/emmet-cheat-sheet.html) |