[您有新的未分配科技点]可,可,可持久化!?------0-1Trie和可持久化Trie普及版讲解

Posted LadyLex

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[您有新的未分配科技点]可,可,可持久化!?------0-1Trie和可持久化Trie普及版讲解相关的知识,希望对你有一定的参考价值。

这一次,我们来了解普通Trie树的变种:0-1Trie以及在其基础上产生的可持久化Trie(其实,普通的Trie也可以可持久化,只是不太常见)

先简单介绍一下0-1Trie:一个0-1Trie节点只有两个子节点,分别代表0和1;从根节点开始,第一层代表限制的最高位,依次往下直到最底层,代表二进制第0位。

0-1Trie上的一条链所表示的数字,就是Trie树中的一个数字。0-1Trie除了节点和插入方式与普通的Trie树略有不同之外,其他操作都是和Trie树完全一样的。在维护这个节点插入过的数的个数size之后,0-1Trie甚至可以做一些平衡树的题……

下面给2道比较简单的例题:

bzoj3689 异或之 http://www.lydsy.com/JudgeOnline/problem.php?id=3689 

bzoj3224 普通平衡树 http://www.lydsy.com/JudgeOnline/problem.php?id=3224

值得注意的是,0-1Trie无法处理负权值,因此,我们可以给每个数加上一个大的修正值delta,使得所有值都成为非负的。最后我们在减去delta即可。

下面给出0-1Trie版的普通平衡树代码,很短,但是的确可以AC:

 1 #include <cstdio>
 2 #include <cstring>
 3 using namespace std;
 4 typedef long long LL;
 5 const int inf=0x7fffffff,delta=10000100;
 6 LL bin[50];
 7 struct Trie
 8 {
 9     Trie *ch[2];int size;
10     Trie(){size=0;ch[1]=ch[0]=NULL;}
11 }*null=new Trie(),*root;
12 inline Trie* newTrie(){Trie *o=new Trie();o->ch[0]=o->ch[1]=null;return o;}
13 inline void insert(int x)
14 {
15     Trie *rt=root;
16     for(int i=30;~i;i--)
17     {
18         int d=(x&bin[i])>>i;
19         if(rt->ch[d]==null)rt->ch[d]=newTrie();
20         rt=rt->ch[d],rt->size++;
21     }
22 }
23 inline void del(int x)
24 {
25     Trie *rt=root;
26     for(int i=30;~i;i--)
27         rt=rt->ch[(x&bin[i])>>i],rt->size--;
28 }
29 inline int getrank(int x)
30 {
31     Trie *rt=root;int ret=0;
32     for(int i=30;~i;i--)
33     {
34         if((x&bin[i])>>i)ret+=rt->ch[0]->size;
35         rt=rt->ch[(x&bin[i])>>i];
36     }
37     return ret;
38 }
39 inline int getval(int rank)
40 {
41     Trie *rt=root;int ret=0;
42     for(int i=30;~i;i--)
43     {
44         if(rt->ch[0]->size>=rank)rt=rt->ch[0];
45         else rank-=rt->ch[0]->size,ret|=bin[i],rt=rt->ch[1];
46     }
47     return ret;
48 }
49 int main()
50 {
51     bin[0]=1;for(int i=1;i<=40;i++)bin[i]=bin[i-1]<<1;
52     root=newTrie();null->ch[0]=null->ch[1]=null;
53     int m,opt,x;scanf("%d",&m);
54     while(m--)
55     {
56         scanf("%d%d",&opt,&x);
57         switch(opt)
58         {
59             case 1:insert(x+delta);break;
60             case 2:del(x+delta);break;
61             case 3:printf("%d\\n",getrank(x+delta)+1);break;
62             case 4:printf("%d\\n",getval(x)-delta);break;
63             case 5:printf("%d\\n",getval(getrank(x+delta))-delta);break;
64             case 6:printf("%d\\n",getval(getrank(x+delta+1)+1)-delta);break;
65         }
66     }
67 }

接下来,我们在0-1Trie的基础上,介绍可持久化Trie。

可持久化Trie树和前面两种可持久化数据结构一样,也是通过复制节点来实现可持久化操作。

在插入的时候,我们也是复制路径上的节点,由于可持久化Trie和主席树一样具有区间可减性,所以我们直接像主席树那样区间相减即可。

具体代码,长得和之前的可持久化Treap差不多……下面给出插入的代码(可能比较丑……)

1 //bin[i]数组为预处理的2的i次方
2 void insert(Trie *&o,Trie *old,int val,int i)
3 {
4     if(i<0)return;
5     int d=((val&bin[i])==bin[i]);//判断当前为是0还是1
6     o->ch[d]=newTrie();o->ch[d^1]=old->ch[d^1];
7     o->ch[d]->size=old->ch[d]->size+1;
8     insert(o->ch[d],old->ch[d],val,i-1);
9 }

可持久化Trie树经常用来处理与异或有关的k小问题。一般来说,我们都是把0-1Trie可持久化来维护数字运算,很少有把字符串的Trie可持久化的题目。

这里再给出两道可持久化Trie的基础题:

bzoj4103[Thu Summer Camp 2015]异或运算 http://www.lydsy.com/JudgeOnline/problem.php?id=4103

我的题解:http://www.cnblogs.com/LadyLex/p/7281945.html

bzoj3166[Heoi2013]Alo http://www.lydsy.com/JudgeOnline/problem.php?id=3166

我的题解:http://www.cnblogs.com/LadyLex/p/7281860.html

可持久化Trie是一种和主席树同样优秀的数据结构,无疑是一种新的解题思路。希望大家能从我的博客中有所收获:)

以上是关于[您有新的未分配科技点]可,可,可持久化!?------0-1Trie和可持久化Trie普及版讲解的主要内容,如果未能解决你的问题,请参考以下文章

[您有新的未分配科技点]无旋treap:从好奇到入门(例题:bzoj3224 普通平衡树)

[您有新的未分配科技点]数位DP:从板子到基础

[您有新的未分配科技点]数位dp:从懵X到板子

[您有新的未分配科技点]计算几何入门:点,向量以及向量的简单应用

[您有新的未分配科技点]博弈论进阶:似乎不那么恐惧了…… (SJ定理,简单的基础模型)

[您有新的未分配科技点][BZOJ3545&BZOJ3551]克鲁斯卡尔重构树