14Spark的核心术语
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了14Spark的核心术语相关的知识,希望对你有一定的参考价值。
Application:spark应用程序,就是用户基于spark api开发的程序,一定是通过一个有main方法的类执行的,比如java开发spark,就是在eclipse中,建立的一个工程
Application Jar:这个就是把写好的spark工程,打包成一个jar包,其中包括了所有的第三方jar依赖包,比如java中,就用maven+assembly插件打包最方便
Driver Program:就是运行程序中main方法的进程,这就是driver,也叫driver进程
Cluster Manager:集群管理器,就是为每个spark application,在集群中调度和分配资源的组件,比如Spark Standalone、YARN、Mesos等
Deploy Mode:部署模式,无论是基于哪种集群管理器,spark作业部署或者运行模式,都分为两种,client和cluster,client模式下driver运行在提交spark作业的机器上,cluster模式下,运行在spark集群中
Worker Node:集群中的工作节点,能够运行executor进程,运行作业代码的节点
Executor :集群管理器为application分配的进程,运行在worker节点上,负责执行作业的任务,并将数据保存在内存或磁盘中,每个application都有自己的executor
Job:每个spark application,根据你执行了多少次action操作,就会有多少个job
Stage:每个job都会划分为多个stage(阶段),每个stage都会有对应的一批task,分配到executor上去执行
Task :driver发送到executor上执行的计算单元,每个task负责在一个阶段(stage),处理一小片数据,计算出对应的结果
deploy mode,分为两种
1、client模式:主要用于测试
2、cluster模式:主要用于生产环境
无论是standalone、yarn,都是分为这两种模式:
1、standalone client、standalone cluster
2、yarn client、yarn cluster
client模式,区别就在于driver启动的位置,你在哪台机器上提交spark application,在那台机器上,就会启动driver进程,直接会去启动一个jvm进程,开始执行你的main类
cluster模式,spark application或者叫做spark作业,提交到cluster manager,cluster manager负责在集群中某个节点上,启动driver进程
cluster mode:集群模式,常用的有两种,standalone和yarn:
1、standalone模式,由Master进程和Worker进程,组成的集群
2、yarn模式,由ResourceManager进程和NodeManager进程,组成的集群
standalone模式下,基于spark的Master进程和Worker进程组成的集群,Worker进程所在节点,也就是Worker节点
yarn模式下,yarn的nodemanager进程所在的节点,就是worker节点
job,作业,一个spark application / spark作业,可能会被分解为一个或者多个job,分解的标准,就是说你的spark代码中,用了几次action操作,就会有几个job
stage,阶段,每个job可能会被分解为一个或者多个stage,分解的标准,你在job的代码中,执行了几次shuffle操作(reduceByKey、groupByKey、countByKey),执行一次shuffle操作,job中就会有两个stage,如果一次shuffle都没执行,那就只有一个stage
task,任务,最小的计算单元,每个stage会对应一批task,具体的数量,是spark自动计算,根据底层的文件(hdfs、hive、本地文件)大小来划分,默认一个hdfs block对应一个task;也可以自己手动通过spark.default.parallelism参数来设置;每个task就处理一小片数据
以上是关于14Spark的核心术语的主要内容,如果未能解决你的问题,请参考以下文章
为啥 Spark 每个执行器只使用一个核心?它如何决定使用分区数量以外的核心?