luoguP2398 GCD SUM [gcd]

Posted ZYBGMZL

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了luoguP2398 GCD SUM [gcd]相关的知识,希望对你有一定的参考价值。

题目描述

for i=1 to n

for j=1 to n

 sum+=gcd(i,j)

给出n求sum. gcd(x,y)表示x,y的最大公约数.

输入输出格式

输入格式:

n

输出格式:

sum

输入输出样例

输入样例#1:
2
输出样例#1:
5

说明

数据范围

30% n<=3000

60% 7000<=n<=7100

100% n<=100000


 

题目的意思大概是这样的

O(n2)枚举当然是不行的啦。

考虑枚举k,求gcd为k的“数对”的个数。

而可以证明gcd为k的“数对”的个数为

利用容斥把gcd为2k,3k,4k的“数对”的个数减去就好啦?

注意k要从大到小枚举。

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<iostream>
 4 using namespace std;
 5 
 6 typedef long long ll;
 7 
 8 const int maxn=100005;
 9 
10 int n;
11 ll dp[maxn],ans=0;
12 
13 int main(){
14     scanf("%d",&n);
15     for(int i=n;i>0;i--){
16         dp[i]=1ll*(n/i)*(n/i);
17         for(int j=(i<<1);j<=n;j+=i)
18             dp[i]-=dp[j];
19         ans+=dp[i]*i;
20     }
21     printf("%lld\\n",ans);
22     return 0;
23 }

 

以上是关于luoguP2398 GCD SUM [gcd]的主要内容,如果未能解决你的问题,请参考以下文章

洛谷P2398 GCD SUM

luogu P2568 GCD

Copy自某谷题解UVA11417 GCD

luoguP1890 gcd区间 [st表][gcd]

luogu P3455 [POI2007]ZAP-Queries

luoguP1029 最大公约数和最小公倍数问题 [gcd][数论]