Wolf and Rabbit

Posted Hunter丶安

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Wolf and Rabbit相关的知识,希望对你有一定的参考价值。

There is a hill with n holes around. The holes are signed from 0 to n-1. 

技术分享


A rabbit must hide in one of the holes. A wolf searches the rabbit in anticlockwise order. The first hole he get into is the one signed with 0. Then he will get into the hole every m holes. For example, m=2 and n=6, the wolf will get into the holes which are signed 0,2,4,0. If the rabbit hides in the hole which signed 1,3 or 5, she will survive. So we call these holes the safe holes. 

InputThe input starts with a positive integer P which indicates the number of test cases. Then on the following P lines,each line consists 2 positive integer m and n(0<m,n<2147483648). 
OutputFor each input m n, if safe holes exist, you should output "YES", else output "NO" in a single line. 
Sample Input

2
1 2
2 2

Sample Output

NO
YES

题意 : 狼可以每次走m步,而这里有n个洞,问是否存在狼无法走到的洞让兔子藏身。
分析 : 只要n和m存在着最大公约数,那么狼就会一直在0,最大公约数,m的位置上循环,不会走到其他的洞上去。
这里简单讲一下最大公约数和最小公倍数的算法:
    最大公约数
int gcd(int i,int j)
{
    if(j==0)
        return i;
    else
        gcd(j,i%j);
}
    最小公倍数 = i*j/最大公约数
代码:
#include <iostream>

using namespace std;

int gcd(int i,int j)
{
    if(j==0)
        return i;
    else
        gcd(j,i%j);
}

int main()
{
   int T;
   while(cin >> T)
   {
       while(T--)
       {
            int a,b;
            cin >> a >> b;
            if(gcd(a,b)==1)
                cout << "NO";
            else
                cout << "YES";
            cout << endl;
       }
   }
}

 

 














以上是关于Wolf and Rabbit的主要内容,如果未能解决你的问题,请参考以下文章

E - Wolf and Rabbit

HDU 1222: Wolf and Rabbit

Wolf and Rabbit

HDU-1222 Wolf and Rabbit (欧几里得定理)

HDU 3046 Pleasant sheep and big big wolf(最小割)

HDU1849 Rabbit and Grass()