POJ 3686.The Windy's 最小费用最大流

Posted GeekZRF

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了POJ 3686.The Windy's 最小费用最大流相关的知识,希望对你有一定的参考价值。

Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 5477   Accepted: 2285

Description

The Windy‘s is a world famous toy factory that owns M top-class workshop to make toys. This year the manager receives N orders for toys. The manager knows that every order will take different amount of hours in different workshops. More precisely, the i-th order will take Zij hours if the toys are making in the j-th workshop. Moreover, each order‘s work must be wholly completed in the same workshop. And a workshop can not switch to another order until it has finished the previous one. The switch does not cost any time.

The manager wants to minimize the average of the finishing time of the N orders. Can you help him?

Input

The first line of input is the number of test case. The first line of each test case contains two integers, N and M (1 ≤ N,M ≤ 50).
The next N lines each contain M integers, describing the matrix Zij (1 ≤ Zij ≤ 100,000) There is a blank line before each test case.

Output

For each test case output the answer on a single line. The result should be rounded to six decimal places.

Sample Input

3

3 4
100 100 100 1
99 99 99 1
98 98 98 1

3 4
1 100 100 100
99 1 99 99
98 98 1 98

3 4
1 100 100 100
1 99 99 99
98 1 98 98

Sample Output

2.000000
1.000000
1.333333

Source

 
题意:有n个玩具m个工厂,一个工厂同时只能生产一个玩具。问平均每个玩具的生产时间。
思路:现在有n个玩具,m个工厂,但是一个工厂可以生产多个玩具。当一个工厂按顺序生产a1,a2,a3...,an玩具,每个玩具的生产时间为Za1,Za1+Za2,Za1+Za2+Za3,...,Za1+Za2+Za3+...+Zan。T=n*Za1+(n-1)*Za2+(n-2)*Za3+...+Zan。这个式子也可以理解为,多个只能生产1个玩具的工厂,但是时间为1~n倍。
代码:
技术分享
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<vector>
using namespace std;
typedef long long ll;
typedef pair<int,int> P;
#define PI acos(-1.0)
const int maxn=3e5+100,maxm=1e5+100,inf=0x3f3f3f3f,mod=1e9+7;
const ll INF=1e18+7;
struct edge
{
    int from,to;
    int cap,cost;
    int rev;
};
int NN;
vector<edge>G[maxn];
int h[maxn];
///顶点的势,取h(u)=(s到u的最短距离),边e=(u,v)的长度变成d`(e)=d(e)+h(u)-h(v)>=0
int dist[maxn];
int prevv[maxn],preve[maxn];///前驱结点和对应的边
void addedge(int u,int v,int cap,int cost)
{
    edge e;
    e.from=u,e.to=v,e.cap=cap,e.cost=cost,e.rev=G[v].size();
    G[u].push_back(e);
    e.from=v,e.to=u,e.cap=0,e.cost=-cost,e.rev=G[u].size()-1;
    G[v].push_back(e);
}
int min_cost_flow(int s,int t,int f)
{
    int res=0;
    fill(h,h+NN,0);
    while(f>0)
    {
        priority_queue<P,vector<P>,greater<P> >q;
        fill(dist+1,dist+NN,inf);
        dist[s]=0;
        q.push(P(dist[s],s));
        while(!q.empty())
        {
            P p=q.top();
            q.pop();
            int u=p.second;
            if(dist[u]<p.first) continue;
            for(int i=0; i<G[u].size(); i++)
            {
                edge e=G[u][i];
                if(e.cap>0&&dist[e.to]>dist[u]+e.cost+h[u]-h[e.to])
                {
                    dist[e.to]=dist[u]+e.cost+h[u]-h[e.to];
                    prevv[e.to]=u;
                    preve[e.to]=i;
                    q.push(P(dist[e.to],e.to));
                }
            }
        }
        if(dist[t]==inf) return res;
        for(int i=0; i<NN; i++) h[i]+=dist[i];
        int d=f;
        for(int i=t; i!=s; i=prevv[i])
            d=min(d,G[prevv[i]][preve[i]].cap);
        f-=d;
        res+=d*h[t];
        for(int i=t; i!=s; i=prevv[i])
        {
            //cout<<i<<" ";
            edge &e=G[prevv[i]][preve[i]];
            e.cap-=d;
            G[i][e.rev].cap+=d;
        }
        //cout<<s<<endl;
    }
    return res;
}
int z[100][100];
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        int n,m;
        scanf("%d%d",&n,&m);
        int s=0,t=n+n*m+1;
        NN=t+1;
        for(int i=1; i<=n; i++)
        {
            addedge(s,i,1,0);
            for(int j=1; j<=m; j++)
            {
                scanf("%d",&z[i][j]);
                for(int k=1; k<=n; k++)
                    addedge(i,n+(j-1)*n+k,1,k*z[i][j]);
            }
        }
        for(int j=1; j<=m; j++)
        {
            for(int k=1; k<=n; k++)
                addedge(n+(j-1)*n+k,t,1,0);
        }
        printf("%.6f\n",min_cost_flow(s,t,inf)*1.0/n);
        for(int i=0; i<NN; i++) G[i].clear();
    }
    return 0;
}
最小费用最大流

 

以上是关于POJ 3686.The Windy's 最小费用最大流的主要内容,如果未能解决你的问题,请参考以下文章

POJ3686 The Windy's

POJ-3686 The Windy's KM算法 拆点题

POJ 3686 The Windy's | 最小费用最大流

POJ 3686 The Windy's (最小费用流或最佳完全匹配)

POJ 3069 Saruman's Army

[POJ2411]Mondriaan's Dream