05transformation操作开发实战
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了05transformation操作开发实战相关的知识,希望对你有一定的参考价值。
1、map:将集合中每个元素乘以2
2、filter:过滤出集合中的偶数
3、flatMap:将行拆分为单词
4、groupByKey:将每个班级的成绩进行分组
5、reduceByKey:统计每个班级的总分
6、sortByKey、sortBy:将学生分数进行排序
7、join:打印每个学生的成绩
8、cogroup:打印每个学生的成绩
package sparkcore.java;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.VoidFunction;
import scala.Tuple2;
/**
* transformation操作实战
*/
public class TransformationOperation {
public static void main(String[] args) {
// map();
// filter();
// flatMap();
// groupByKey();
// reduceByKey();
// sortByKey();
// sortBy();
join();
cogroup();
}
/**
* map算子案例:将集合中每一个元素都乘以2
*/
public static void map() {
// 创建SparkConf
SparkConf conf = new SparkConf().setAppName("map").setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 构造集合
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);
// 并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
// 使用map算子,将集合中的每个元素都乘以2
// map算子,是对任何类型的RDD,都可以调用的
// 在java中,map算子接收的参数是Function对象
// 创建的Function对象,一定会让你设置第二个泛型参数,这个泛型类型,就是返回的新元素的类型
// 同时call()方法的返回类型,也必须与第二个泛型类型相同
// 在call()方法内部,就可以对原始RDD中的每一个元素进行各种处理和计算,并返回一个新的元素
// 所有新的元素就会组成一个新的RDD
JavaRDD<Integer> multipleNumberRDD = numberRDD.map(new Function<Integer, Integer>() {
private static final long serialVersionUID = 1L;
// 传入call()方法的,就是1,2,3,4,5
// 返回的就是2,4,6,8,10
@Override
public Integer call(Integer v1) throws Exception {
return v1 * 2;
}
});
// 打印新的RDD
multipleNumberRDD.foreach(new VoidFunction<Integer>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Integer t) throws Exception {
System.out.println(t);
}
// 输出结果:
// 2
// 4
// 6
// 8
// 10
});
// 关闭JavaSparkContext
sc.close();
}
/**
* filter算子案例:过滤集合中的偶数
*/
public static void filter() {
// 创建SparkConf
SparkConf conf = new SparkConf().setAppName("filter").setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
// 并行化集合,创建初始RDD
JavaRDD<Integer> numberRDD = sc.parallelize(numbers);
// 对初始RDD执行filter算子,过滤出其中的偶数
// filter算子,传入的也是Function,其他的使用注意点,实际上和map是一样的
// 但是,唯一的不同,就是call()方法的返回类型是Boolean
// 每一个初始RDD中的元素,都会传入call()方法,此时你可以执行各种自定义的计算逻辑
// 来判断这个元素是否是你想要的
// 如果你想在新的RDD中保留这个元素,那么就返回true;否则,不想保留这个元素,返回false
JavaRDD<Integer> evenNumberRDD = numberRDD.filter(new Function<Integer, Boolean>() {
private static final long serialVersionUID = 1L;
// 在这里,1到10,都会传入进来
// 但是根据我们的逻辑,只有2,4,6,8,10这几个偶数,会返回true
// 所以,只有偶数会保留下来,放在新的RDD中
@Override
public Boolean call(Integer v1) throws Exception {
return v1 % 2 == 0;
}
});
// 打印新的RDD
evenNumberRDD.foreach(new VoidFunction<Integer>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Integer t) throws Exception {
System.out.println(t);
}
// 输出结果:
// 2
// 4
// 6
// 8
// 10
});
// 关闭JavaSparkContext
sc.close();
}
/**
* flatMap案例:将文本行拆分为多个单词
*/
public static void flatMap() {
// 创建SparkConf
SparkConf conf = new SparkConf().setAppName("flatMap").setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 构造集合
List<String> lineList = Arrays.asList("hello you", "hello me", "hello world");
// 并行化集合,创建RDD
JavaRDD<String> lines = sc.parallelize(lineList);
// 对RDD执行flatMap算子,将每一行文本,拆分为多个单词
// flatMap算子,在java中,接收的参数是FlatMapFunction
// 我们需要自己定义FlatMapFunction的第二个泛型类型,即,代表了返回的新元素的类型
// call()方法,返回的类型,不是U,而是Iterator<U>,这里的U也与第二个泛型类型相同
// flatMap其实就是,接收原始RDD中的每个元素,并进行各种逻辑的计算和处理,返回可以返回多个元素
// 多个元素,即封装在Iterator集合中,可以使用ArrayList等集合
// 新的RDD中,即封装了所有的新元素;也就是说,新的RDD的大小一定是 >= 原始RDD的大小
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
private static final long serialVersionUID = 1L;
// 在这里会,比如,传入第一行,hello you
// 返回的是一个Iterator<String>(hello, you)
@Override
public Iterator<String> call(String t) throws Exception {
return Arrays.asList(t.split(" ")).iterator();
}
});
// 打印新的RDD
words.foreach(new VoidFunction<String>() {
private static final long serialVersionUID = 1L;
@Override
public void call(String t) throws Exception {
System.out.println(t);
}
// 输出结果:
// hello
// you
// hello
// me
// hello
// world
});
// 关闭JavaSparkContext
sc.close();
}
/**
* groupByKey案例:按照班级对成绩进行分组
*/
public static void groupByKey() {
// 创建SparkConf
SparkConf conf = new SparkConf().setAppName("groupByKey").setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Tuple2<String, Integer>> scoreList = Arrays.asList(new Tuple2<String, Integer>("class1", 80),
new Tuple2<String, Integer>("class2", 75), new Tuple2<String, Integer>("class1", 90),
new Tuple2<String, Integer>("class2", 65));
// 并行化集合,创建JavaPairRDD
JavaPairRDD<String, Integer> scores = sc.parallelizePairs(scoreList);
// 针对scores RDD,执行groupByKey算子,对每个班级的成绩进行分组
// groupByKey算子,返回的还是JavaPairRDD
// 但是,JavaPairRDD的第一个泛型类型不变,第二个泛型类型变成Iterable这种集合类型
// 也就是说,按照了key进行分组,那么每个key可能都会有多个value,此时多个value聚合成了Iterable
// 那么接下来,我们是不是就可以通过groupedScores这种JavaPairRDD,很方便地处理每个分组内的数据
JavaPairRDD<String, Iterable<Integer>> groupedScores = scores.groupByKey();
// 打印groupedScores RDD
groupedScores.foreach(new VoidFunction<Tuple2<String, Iterable<Integer>>>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Tuple2<String, Iterable<Integer>> t) throws Exception {
System.out.println("class: " + t._1);
Iterator<Integer> ite = t._2.iterator();
while (ite.hasNext()) {
System.out.println(ite.next());
}
System.out.println("==============================");
}
// 输出结果:
// class: class1
// 80
// 90
// ==============================
// class: class2
// 75
// 65
// ==============================
});
// 关闭JavaSparkContext
sc.close();
}
/**
* reduceByKey案例:统计每个班级的总分
*/
public static void reduceByKey() {
// 创建SparkConf
SparkConf conf = new SparkConf().setAppName("reduceByKey").setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Tuple2<String, Integer>> scoreList = Arrays.asList(new Tuple2<String, Integer>("class1", 80),
new Tuple2<String, Integer>("class2", 75), new Tuple2<String, Integer>("class1", 90),
new Tuple2<String, Integer>("class2", 65));
// 并行化集合,创建JavaPairRDD
JavaPairRDD<String, Integer> scores = sc.parallelizePairs(scoreList);
// 针对scores RDD,执行reduceByKey算子
// reduceByKey,接收的参数是Function2类型,它有三个泛型参数,实际上代表了三个值
// 第一个泛型类型和第二个泛型类型,代表了原始RDD中的元素的value的类型
// 因此对每个key进行reduce,都会依次将第一个、第二个value传入,将值再与第三个value传入
// 因此此处,会自动定义两个泛型类型,代表call()方法的两个传入参数的类型
// 第三个泛型类型,代表了每次reduce操作返回的值的类型,默认也是与原始RDD的value类型相同的
// reduceByKey算法返回的RDD,还是JavaPairRDD<key, value>
JavaPairRDD<String, Integer> totalScores = scores.reduceByKey(new Function2<Integer, Integer, Integer>() {
private static final long serialVersionUID = 1L;
// 对每个key,都会将其value,依次传入call方法
// 从而聚合出每个key对应的一个value
// 然后,将每个key对应的一个value,组合成一个Tuple2,作为新RDD的元素
@Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
}
});
// 打印totalScores RDD
totalScores.foreach(new VoidFunction<Tuple2<String, Integer>>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Tuple2<String, Integer> t) throws Exception {
System.out.println(t._1 + ": " + t._2);
}
// 输出结果:
// class1: 170
// class2: 140
});
// 关闭JavaSparkContext
sc.close();
}
/**
* sortByKey案例:按照学生分数进行排序,分数为Key
*/
public static void sortByKey() {
// 创建SparkConf
SparkConf conf = new SparkConf().setAppName("sortByKey").setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Tuple2<Integer, String>> scoreList = Arrays.asList(new Tuple2<Integer, String>(65, "leo"),
new Tuple2<Integer, String>(50, "tom"), new Tuple2<Integer, String>(100, "marry"), new Tuple2<Integer, String>(80, "jack"));
// 并行化集合,创建RDD
JavaPairRDD<Integer, String> scores = sc.parallelizePairs(scoreList);
// 对scores RDD执行sortByKey算子
// sortByKey其实就是根据key进行排序,可以手动指定升序,或者降序(false时)
// 返回的,还是JavaPairRDD,其中的元素内容,都是和原始的RDD一模一样的
// 但是就是RDD中的元素的顺序,不同了
JavaPairRDD<Integer, String> sortedScores = scores.sortByKey(false);
// 打印sortedScored RDD
sortedScores.foreach(new VoidFunction<Tuple2<Integer, String>>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Tuple2<Integer, String> t) throws Exception {
System.out.println(t._1 + ": " + t._2);
}
// 输出结果:
// 100: marry
// 80: jack
// 65: leo
// 50: tom
});
// 关闭JavaSparkContext
sc.close();
}
/**
* sortByKey案例:按照学生分数进行排序,分数为value
*/
public static void sortBy() {
// 创建SparkConf
SparkConf conf = new SparkConf().setAppName("sortByKey").setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Tuple2<String, Integer>> scoreList = Arrays.asList(new Tuple2<String, Integer>("leo", 65),
new Tuple2<String, Integer>("tom", 50), new Tuple2<String, Integer>("marry", 100), new Tuple2<String, Integer>("jack", 80));
// 注:只有JavaRDD才有sortBy方法,而JavaPairRDD是没有的
JavaRDD<Tuple2<String, Integer>> scores = sc.parallelize(scoreList);
// 根据value值进行降序排序
JavaRDD<Tuple2<String, Integer>> sortedScores = scores.sortBy(new Function<Tuple2<String, Integer>, Integer>() {
private static final long serialVersionUID = 1L;
@Override
public Integer call(Tuple2<String, Integer> v1) throws Exception {
return v1._2;// 返回待排序的值,这里根据value进行排序,而非key
}
}, false, 1);
// 打印sortedScored RDD
sortedScores.foreach(new VoidFunction<Tuple2<String, Integer>>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Tuple2<String, Integer> t) throws Exception {
System.out.println(t._1 + ": " + t._2);
}
// 输出结果:
// marry: 100
// jack: 80
// leo: 65
// tom: 50
});
// 关闭JavaSparkContext
sc.close();
}
/**
* join案例:打印学生成绩
*/
public static void join() {
// 创建SparkConf
SparkConf conf = new SparkConf().setAppName("join").setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Tuple2<Integer, String>> studentList = Arrays.asList(new Tuple2<Integer, String>(1, "leo"),
new Tuple2<Integer, String>(2, "jack"), new Tuple2<Integer, String>(3, "tom"));
List<Tuple2<Integer, Integer>> scoreList = Arrays.asList(new Tuple2<Integer, Integer>(1, 100), new Tuple2<Integer, Integer>(2, 90),
new Tuple2<Integer, Integer>(3, 60), new Tuple2<Integer, Integer>(1, 70), new Tuple2<Integer, Integer>(2, 80),
new Tuple2<Integer, Integer>(3, 50));
// 并行化两个RDD
JavaPairRDD<Integer, String> students = sc.parallelizePairs(studentList);
JavaPairRDD<Integer, Integer> scores = sc.parallelizePairs(scoreList);
// 使用join算子关联两个RDD
// join会根据key进行join,并返回JavaPairRDD
// 该JavaPairRDD的第一个泛型类型为两个原始JavaPairRDD的key的类型(两个Key类型相同)
// 第二个泛型类型,是Tuple2<v1, v2>的类型,Tuple2的两个泛型分别为两个原始RDD的value的类型
// 什么意思呢?比如有(1, 1) (1, 2) (1, 3)的一个RDD
// 还有一个(1, 4) (2, 1) (2, 2)的一个RDD
// join以后,实际上会得到(1 (1, 4)) (1, (2, 4)) (1, (3, 4))
JavaPairRDD<Integer, Tuple2<String, Integer>> studentScores = students.join(scores);
// 打印studnetScores RDD
studentScores.foreach(new VoidFunction<Tuple2<Integer, Tuple2<String, Integer>>>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Tuple2<Integer, Tuple2<String, Integer>> t) throws Exception {
System.out.println("student id: " + t._1);
System.out.println("student name: " + t._2._1);
System.out.println("student score: " + t._2._2);
System.out.println("===============================");
}
// 输出结果:
// student id: 1
// student name: leo
// student score: 100
// ===============================
// student id: 1
// student name: leo
// student score: 70
// ===============================
// student id: 3
// student name: tom
// student score: 60
// ===============================
// student id: 3
// student name: tom
// student score: 50
// ===============================
// student id: 2
// student name: jack
// student score: 90
// ===============================
// student id: 2
// student name: jack
// student score: 80
// ===============================
});
// 关闭JavaSparkContext
sc.close();
}
/**
* cogroup案例:打印学生成绩
*/
public static void cogroup() {
// 创建SparkConf
SparkConf conf = new SparkConf().setAppName("cogroup").setMaster("local");
// 创建JavaSparkContext
JavaSparkContext sc = new JavaSparkContext(conf);
// 模拟集合
List<Tuple2<Integer, String>> studentList = Arrays.asList(new Tuple2<Integer, String>(1, "leo"),
new Tuple2<Integer, String>(2, "jack"), new Tuple2<Integer, String>(3, "tom"));
List<Tuple2<Integer, Integer>> scoreList = Arrays.asList(new Tuple2<Integer, Integer>(1, 100), new Tuple2<Integer, Integer>(2, 90),
new Tuple2<Integer, Integer>(3, 60), new Tuple2<Integer, Integer>(1, 70), new Tuple2<Integer, Integer>(2, 80),
new Tuple2<Integer, Integer>(3, 50));
// 并行化两个RDD
JavaPairRDD<Integer, String> students = sc.parallelizePairs(studentList);
JavaPairRDD<Integer, Integer> scores = sc.parallelizePairs(scoreList);
// cogroup与join不同
// 相当于是,一个key join上的所有value,都给放到一个Iterable里面去了
// cogroup,不太好讲解,希望大家通过动手编写我们的案例,仔细体会其中的奥妙
JavaPairRDD<Integer, Tuple2<Iterable<String>, Iterable<Integer>>> studentScores = students.cogroup(scores);
// 打印studnetScores RDD
studentScores.foreach(new VoidFunction<Tuple2<Integer, Tuple2<Iterable<String>, Iterable<Integer>>>>() {
private static final long serialVersionUID = 1L;
@Override
public void call(Tuple2<Integer, Tuple2<Iterable<String>, Iterable<Integer>>> t) throws Exception {
System.out.println("student id: " + t._1);
System.out.println("student name: " + t._2._1);
System.out.println("student score: " + t._2._2);
System.out.println("===============================");
}
// 输出结果:
// student id: 1
// student name: [leo]
// student score: [100, 70]
// ===============================
// student id: 3
// student name: [tom]
// student score: [60, 50]
// ===============================
// student id: 2
// student name: [jack]
// student score: [90, 80]
// ===============================
});
// 关闭JavaSparkContext
sc.close();
}
}package sparkcore.scala
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
object TransformationOperation {
def main(args: Array[String]) {
// map()
// filter()
// flatMap()
// groupByKey()
// reduceByKey()
// sortByKey()
// sortBy()
// join()
cogroup()
}
def map() {
val conf = new SparkConf()
.setAppName("map")
.setMaster("local")
val sc = new SparkContext(conf)
val numbers = Array(1, 2, 3, 4, 5)
val numberRDD = sc.parallelize(numbers, 1)
val multipleNumberRDD = numberRDD.map { num => num * 2 }
multipleNumberRDD.foreach { num => println(num) }
// 输出结果:
// 2
// 4
// 6
// 8
// 10
}
def filter() {
val conf = new SparkConf()
.setAppName("filter")
.setMaster("local")
val sc = new SparkContext(conf)
val numbers = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
val numberRDD = sc.parallelize(numbers, 1)
val evenNumberRDD = numberRDD.filter { num => num % 2 == 0 }
evenNumberRDD.foreach { num => println(num) }
// 输出结果:
// 2
// 4
// 6
// 8
// 10
}
def flatMap() {
val conf = new SparkConf()
.setAppName("flatMap")
.setMaster("local")
val sc = new SparkContext(conf)
val lineArray = Array("hello you", "hello me", "hello world")
val lines = sc.parallelize(lineArray, 1)
val words = lines.flatMap { line => line.split(" ") }
words.foreach { word => println(word) }
// 输出结果:
// hello
// you
// hello
// me
// hello
// world
}
def groupByKey() {
val conf = new SparkConf()
.setAppName("groupByKey")
.setMaster("local")
val sc = new SparkContext(conf)
val scoreList = Array(Tuple2("class1", 80), Tuple2("class2", 75),
Tuple2("class1", 90), Tuple2("class2", 60))
val scores = sc.parallelize(scoreList, 1)
val groupedScores = scores.groupByKey()
groupedScores.foreach(score => {
println(score._1);
score._2.foreach { singleScore => println(singleScore) };
println("=============================")
})
// 输出结果:
// class1
// 80
// 90
// =============================
// class2
// 75
// 60
// =============================
}
def reduceByKey() {
val conf = new SparkConf()
.setAppName("groupByKey")
.setMaster("local")
val sc = new SparkContext(conf)
val scoreList = Array(Tuple2("class1", 80), Tuple2("class2", 75),
Tuple2("class1", 90), Tuple2("class2", 60))
val scores = sc.parallelize(scoreList, 1)
val totalScores = scores.reduceByKey(_ + _)
totalScores.foreach(classScore => println(classScore._1 + ": " + classScore._2))
// 输出结果:
// class1: 170
// class2: 135
}
def sortByKey() {
val conf = new SparkConf()
.setAppName("sortByKey")
.setMaster("local")
val sc = new SparkContext(conf)
val scoreList = Array(Tuple2(65, "leo"), Tuple2(50, "tom"),
Tuple2(100, "marry"), Tuple2(85, "jack"))
val scores = sc.parallelize(scoreList, 1)
val sortedScores = scores.sortByKey(false)
sortedScores.foreach(studentScore => println(studentScore._1 + ": " + studentScore._2))
// 输出结果:
// 100: marry
// 85: jack
// 65: leo
// 50: tom
}
def sortBy() {
val conf = new SparkConf()
.setAppName("sortByKey")
.setMaster("local")
val sc = new SparkContext(conf)
val scoreList = Array(Tuple2("leo", 65), Tuple2("tom", 50), Tuple2("marry", 100), Tuple2("jack", 80))
val scores = sc.parallelize(scoreList, 1)
val sortedScores = scores.sortBy(_._2, false, 1)
sortedScores.foreach(studentScore => println(studentScore._1 + ": " + studentScore._2))
// 输出结果:
// marry: 100
// jack: 80
// leo: 65
// tom: 50
}
def join() {
val conf = new SparkConf()
.setAppName("join")
.setMaster("local")
val sc = new SparkContext(conf)
val studentList = Array(
Tuple2(1, "leo"),
Tuple2(2, "jack"),
Tuple2(3, "tom"));
val scoreList = Array(
Tuple2(1, 100), Tuple2(2, 90), Tuple2(3, 60),
Tuple2(1, 70), Tuple2(2, 80), Tuple2(3, 50));
val students = sc.parallelize(studentList);
val scores = sc.parallelize(scoreList);
val studentScores = students.join(scores)
studentScores.foreach(studentScore => {
println("student id: " + studentScore._1);
println("student name: " + studentScore._2._1)
println("student socre: " + studentScore._2._2)
println("=======================================")
})
// 输出结果:
// student id: 1
// student name: leo
// student socre: 100
// =======================================
// student id: 1
// student name: leo
// student socre: 70
// =======================================
// student id: 3
// student name: tom
// student socre: 60
// =======================================
// student id: 3
// student name: tom
// student socre: 50
// =======================================
// student id: 2
// student name: jack
// student socre: 90
// =======================================
// student id: 2
// student name: jack
// student socre: 80
// =======================================
}
def cogroup() {
val conf = new SparkConf()
.setAppName("join")
.setMaster("local")
val sc = new SparkContext(conf)
val studentList = Array(
Tuple2(1, "leo"),
Tuple2(2, "jack"),
Tuple2(3, "tom"));
val scoreList = Array(
Tuple2(1, 100), Tuple2(2, 90), Tuple2(3, 60),
Tuple2(1, 70), Tuple2(2, 80), Tuple2(3, 50));
val students = sc.parallelize(studentList);
val scores = sc.parallelize(scoreList);
val studentScores = students.cogroup(scores)
studentScores.foreach(studentScore => {
println("student id: " + studentScore._1);
println("student name: " + studentScore._2._1)
println("student socre: " + studentScore._2._2)
println("=======================================")
})
// 输出结果:
// student id: 1
// student name: CompactBuffer(leo)
// student socre: CompactBuffer(100, 70)
// =======================================
// student id: 3
// student name: CompactBuffer(tom)
// student socre: CompactBuffer(60, 50)
// =======================================
// student id: 2
// student name: CompactBuffer(jack)
// student socre: CompactBuffer(90, 80)
// =======================================
}
}以上是关于05transformation操作开发实战的主要内容,如果未能解决你的问题,请参考以下文章
:app:transform Classes With Profilers-transform For Debug FAILED