常微分方程1:与方程联系的相流

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了常微分方程1:与方程联系的相流相关的知识,希望对你有一定的参考价值。

1.1 向量场
 
技术分享技术分享中一开集技术分享上的向量场技术分享指的是技术分享上的一个技术分享向量值函数:技术分享技术分享
 
 
1.2 常微分方程
 
技术分享技术分享上的常微分方程指的是形如 :
 
技术分享    技术分享
 
 
的方程,其中技术分享是定义在技术分享
 
上的向量场.若有技术分享是定义在技术分享中某个开集技术分享上的向量值函数使上述方程成立,则称技术分享是该方程在技术分享上的解。
 
1.3 右端自治情况下的意义
 
技术分享技术分享无关,则方程技术分享的意思是:
 
是否存在这样的曲线技术分享,使它在每一点处的切向量正好是给定的向量场在这一点处的取值?
 
从运动学角度来看,如果左端和右端都是一维的情形,方程的意思是,是否存在技术分享上的这样一种运动,使得在每一点的运动速度是给定的数值?
 
右端与t无关的情形,称方程是一个自治系统,否则是非自治的。
 
1.4  微分方程的基本问题
 
一般来说,方程需要一个定解条件,更具体一点,是形如:
 
 技术分享技术分享    技术分享
 
的限制条件。它指的是曲线或者运动在某一刻的位置,常常取技术分享技术分享=0,表示初始时刻的运动状态。
 
显然我们会碰到这样的问题:
 
1.方程是否存在满足技术分享技术分享技术分享技术分享附近的一个解?
 
2.这个解是否在其存在区间上是唯一的?
 
3.这个解能在多大的范围内存在?
 
我们可以先看两个例子:
 
1.技术分享技术分享

 技术分享

显然,技术分享技术分享是方程的解,并且它在整个区间上存在。它实际上是唯一的解(初等积分法可以求出)
 
2.技术分享技术分享

 技术分享

方程在技术分享附近存在唯一解
 
技术分享
 
注意到解不能延拓到1的右侧,所以该方程的解的存在区间是有限的。
 
1.5 微分同胚
 
双射:技术分享

 

是微分同胚,如果技术分享技术分享技术分享都是技术分享光滑映射。
 
微分同胚的存在性必然表明技术分享.或者说,维数是微分同胚意义下的不变量.
 
1.6 相流
 
相流技术分享技术分享上的一族自微分同胚技术分享,满足以下两个条件:
 
1.技术分享技术分享是自微分同胚族,技术分享
2.(群条件) 技术分享技术分享

 

 
1.7  由特殊的自治方程所决定的相流
 
若自治方程在初始条件下技术分享均在整个实轴上存在唯一的解,则这样的自治方程可以确定相流.
 
定义技术分享
 
技术分享
 
其中技术分享是自治方程在初始条件
 
技术分享
 
的解在时刻技术分享时的位置。
 
定理1.7.1
 
1.由上述方法确定技术分享技术分享是微分同胚
 
2.技术分享技术分享是一族相流.
 
注意到技术分享是方程在初始条件
 
技术分享
 
下的解。技术分享它是无限延伸的曲线,称为过技术分享点处的相曲线。可以知道,过每一点处只有唯一的一条相曲线(由假定的唯一性).
 
1.7.1的2证明是容易的,只需注意到这样一件事实:
 
如果技术分享是自治方程的解,则技术分享同样是方程的解.
 
而1我们目前还没法证明技术分享的可微性,这实际上是解对初值条件的可微依赖性,我们先假定自治方程满足大范围存在性和整体唯一性的时候是成立的。过后我们会用常微分方程基本定理来证明它。
 
1.8 相流决定的向量场
 
给定技术分享技术分享,考虑
 

技术分享

 

技术分享右侧是在零时刻求的导数。它得到了技术分享上的一个向量场。
 
1.9 相流,向量场和自治方程的关系
 
思考以下三句话:
 
1.相流可以确定向量场(在1.8的意义下)
 
2.向量场可以得到自治方程
 
3.特殊的自治方程可以得到相流
 

 

以上是关于常微分方程1:与方程联系的相流的主要内容,如果未能解决你的问题,请参考以下文章

数字信号处理线性常系数差分方程 ( “ 线性常系数差分方程 “ 与 “ 线性时不变系统 “ 关联 | 根据 “ 线性常系数差分方程 “ 与 “ 边界条件 “ 确定系统是否是 线性时不变系统方法 )

矩阵指数函数与常微分方程组求解

SciPy笔记(有初始条件的常微分方程)

数字信号处理线性常系数差分方程 ( 卷积 与 “ 线性常系数差分方程 “ | 使用 matlab 求解 “ 线性常系数差分方程 “ )

2014-2015-2(常微分方程64, 数学分析提高64)

2013-2014-1(实变函数56, 常微分方程64)