hdu 6053 TrickGCD 筛法

Posted xjhz

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了hdu 6053 TrickGCD 筛法相关的知识,希望对你有一定的参考价值。

TrickGCD

Time Limit: 5000/2500 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)


Problem Description
You are given an array A , and Zhu wants to know there are how many different array B satisfy the following conditions?

1BiAi
* For each pair( l , r ) (1lrn) , gcd(bl,bl+1...br)2
 

 

Input
The first line is an integer T(1T10) describe the number of test cases.

Each test case begins with an integer number n describe the size of array A.

Then a line contains n numbers describe each element of A

You can assume that 1n,Ai105
 

 

Output
For the kth test case , first output "Case #k: " , then output an integer as answer in a single line . because the answer may be large , so you are only need to output answer mod 109+7
 

 

Sample Input
1 4 4 4 4 4
 

 

Sample Output
Case #1: 17
 

 

Source
 

 

Recommend
liuyiding
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
#include<bitset>
#include<time.h>
using namespace std;
#define LL long long
#define pi (4*atan(1.0))
#define eps 1e-4
#define bug(x)  cout<<"bug"<<x<<endl;
const int N=1e5+10,M=1e6+10,inf=1e9+7,MOD=1e9+7;
const LL INF=1e18+10,mod=1e9+7;

int a[N],sum[N];
LL dp[N],num[N];
LL qpow(LL a,LL b,LL c)
{
    LL ans=1;
    while(b)
    {
        if(b%2)ans=(ans*a)%c;
        b>>=1;
        a=(a*a)%mod;
    }
    return ans;
}
int main()
{
    int n;
    int T,cas=1;
    scanf("%d",&T);
    while(T--)
    {
        memset(a,0,sizeof(a));
        memset(sum,0,sizeof(sum));
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            int x;
            scanf("%d",&x);
            a[x]++;
        }
        for(int i=1;i<=100005;i++)
            sum[i]=sum[i-1]+a[i];
        for(int i=2;i<=100000;i++)//枚举除数
        {
            num[i]=1LL;
            for(int j=0;j<=100000;j+=i)
            {
                int b;
                if(j+i-1>100000)b=sum[100001]-sum[j-1];
                else if(j==0) b=sum[j+i-1];
                else b=sum[j+i-1]-sum[j-1];
                int a=j/i;
                if(a==0&&b)num[i]=0;
                else if(b)num[i]=(num[i]*qpow(a,b,mod))%mod;
            }
        }
        for(int i=100000;i>=2;i--)
        {
            dp[i]=num[i];
            for(int j=i+i;j<=100000;j+=i)
                dp[i]-=dp[j],dp[i]=(dp[i]%mod+mod)%mod;
        }
        LL ans=0;
        for(int i=2;i<=100000;i++)
            ans+=dp[i],ans%=mod;
        printf("Case #%d: %lld\n",cas++,ans);

    }
    return 0;
}

 

以上是关于hdu 6053 TrickGCD 筛法的主要内容,如果未能解决你的问题,请参考以下文章

HDU 6053 - TrickGCD

HDU 6053 ( TrickGCD ) 分块+容斥

HDU 6053 TrickGCD(分块)

HDU 6053 TrickGCD 容斥

hdu 6053 TrickGCD (莫比乌斯)

hdu6053(莫比乌斯+容斥+分块)