Hadoop学习路线图
Posted 10年 Java程序员,硬核人生!勇往直前,永不退缩!
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Hadoop学习路线图相关的知识,希望对你有一定的参考价值。
Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等。 从2011年开始,中国进入大数据风起云涌的时代,以Hadoop为代表的家族软件,占据了大数据处理的广阔地盘。开源界及厂商,所有数据软件,无一不向Hadoop靠拢。Hadoop也从小众的高富帅领域,变成了大数据开发的标准。在Hadoop原有技术基础之上,出现了Hadoop家族产品,通过“大数据”概念不断创新,推出科技进步。 作为IT界的开发人员,我们也要跟上节奏,抓住机遇,跟着Hadoop一起雄起!
前言 使用Hadoop已经有一段时间了,从开始的迷茫,到各种的尝试,到现在组合应用….慢慢地涉及到数据处理的事情,已经离不开hadoop了。Hadoop在大数据领域的成功,更引发了它本身的加速发展。现在Hadoop家族产品,已经达到20个了之多。 有必要对自己的知识做一个整理了,把产品和技术都串起来。不仅能加深印象,更可以对以后的技术方向,技术选型做好基础准备。
1. Hadoop家族产品 截止到2013年,根据cloudera的统计,Hadoop家族产品已经达到20个!
http://blog.cloudera.com/blog/2013/01/apache-hadoop-in-2013-the-state-of-the-platform/ 接下来,我把这20个产品,分成了2类。
- 第一类,是我已经掌握的
- 第二类,是TODO准备继续学习的
一句话产品介绍:Apache Hadoop: 是Apache开源组织的一个分布式计算开源框架,提供了一个分布式文件系统子项目(HDFS)和支持MapReduce分布式计算的软件架构。
- Apache Hive: 是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。
- Apache Pig: 是一个基于Hadoop的大规模数据分析工具,它提供的SQL-LIKE语言叫Pig Latin,该语言的编译器会把类SQL的数据分析请求转换为一系列经过优化处理的MapReduce运算。
- Apache HBase: 是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群。
- Apache Sqoop: 是一个用来将Hadoop和关系型数据库中的数据相互转移的工具,可以将一个关系型数据库(mysql ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。
- Apache Zookeeper: 是一个为分布式应用所设计的分布的、开源的协调服务,它主要是用来解决分布式应用中经常遇到的一些数据管理问题,简化分布式应用协调及其管理的难度,提供高性能的分布式服务
- Apache Mahout:是基于Hadoop的机器学习和数据挖掘的一个分布式框架。Mahout用MapReduce实现了部分数据挖掘算法,解决了并行挖掘的问题。
- Apache Cassandra:是一套开源分布式NoSQL数据库系统。它最初由Facebook开发,用于储存简单格式数据,集Google BigTable的数据模型与Amazon Dynamo的完全分布式的架构于一身
- Apache Avro: 是一个数据序列化系统,设计用于支持数据密集型,大批量数据交换的应用。Avro是新的数据序列化格式与传输工具,将逐步取代Hadoop原有的IPC机制
- Apache Ambari: 是一种基于Web的工具,支持Hadoop集群的供应、管理和监控。
- Apache Chukwa: 是一个开源的用于监控大型分布式系统的数据收集系统,它可以将各种各样类型的数据收集成适合 Hadoop 处理的文件保存在 HDFS 中供 Hadoop 进行各种 MapReduce 操作。
- Apache Hama: 是一个基于HDFS的BSP(Bulk Synchronous Parallel)并行计算框架, Hama可用于包括图、矩阵和网络算法在内的大规模、大数据计算。
- Apache Flume: 是一个分布的、可靠的、高可用的海量日志聚合的系统,可用于日志数据收集,日志数据处理,日志数据传输。
- Apache Giraph: 是一个可伸缩的分布式迭代图处理系统, 基于Hadoop平台,灵感来自 BSP (bulk synchronous parallel) 和 Google 的 Pregel。
- Apache Oozie: 是一个工作流引擎服务器, 用于管理和协调运行在Hadoop平台上(HDFS、Pig和MapReduce)的任务。
- Apache Crunch: 是基于Google的FlumeJava库编写的Java库,用于创建MapReduce程序。与Hive,Pig类似,Crunch提供了用于实现如连接数据、执行聚合和排序记录等常见任务的模式库
- Apache Whirr: 是一套运行于云服务的类库(包括Hadoop),可提供高度的互补性。Whirr学支持Amazon EC2和Rackspace的服务。
- Apache Bigtop: 是一个对Hadoop及其周边生态进行打包,分发和测试的工具。
- Apache HCatalog: 是基于Hadoop的数据表和存储管理,实现中央的元数据和模式管理,跨越Hadoop和RDBMS,利用Pig和Hive提供关系视图。
- Cloudera Hue: 是一个基于WEB的监控和管理系统,实现对HDFS,MapReduce/YARN, HBase, Hive, Pig的web化操作和管理。
2. Hadoop家族学习路线图 下面我将分别介绍各个产品的安装和使用,以我经验总结我的学习路线。Hadoop
- Hadoop学习路线图
- Yarn学习路线图
- 用Maven构建Hadoop项目
- Hadoop历史版本安装
- Hadoop编程调用HDFS
- 海量Web日志分析 用Hadoop提取KPI统计指标
- 用Hadoop构建电影推荐系统
- 创建Hadoop母体虚拟机
- 克隆虚拟机增加Hadoop节点
- R语言为Hadoop注入统计血脉
- RHadoop实践系列之一 Hadoop环境搭建
Hive
- Hive学习路线图
- Hive安装及使用攻略
- Hive导入10G数据的测试
- R利剑NoSQL系列文章 之 Hive
- 用RHive从历史数据中提取逆回购信息
Pig
- Pig学习路线图
Zookeeper
- Zookeeper学习路线图
- ZooKeeper伪分步式集群安装及使用
- ZooKeeper实现分布式队列Queue
- ZooKeeper实现分布式FIFO队列
HBase
- HBase学习路线图
- RHadoop实践系列之四 rhbase安装与使用
Mahout
- Mahout学习路线图
- 用R解析Mahout用户推荐协同过滤算法(UserCF)
- RHadoop实践系列之三 R实现MapReduce的协同过滤算法
- 用Maven构建Mahout项目
- Mahout推荐算法API详解
- 从源代码剖析Mahout推荐引擎
- Mahout分步式程序开发 基于物品的协同过滤ItemCF
- Mahout分步式程序开发 聚类Kmeans
- 用Mahout构建职位推荐引擎
Sqoop
- Sqoop学习路线图
Cassandra
- Cassandra学习路线图
- Cassandra单集群实验2个节点
- R利剑NoSQL系列文章 之 Cassandra
以上是关于Hadoop学习路线图的主要内容,如果未能解决你的问题,请参考以下文章