Objective-C Runtime 运行时之一:类与对象
Posted zzfx
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Objective-C Runtime 运行时之一:类与对象相关的知识,希望对你有一定的参考价值。
Objective-C语言是一门动态语言,它将很多静态语言在编译和链接时期做的事放到了运行时来处理。这种动态语言的优势在于:我们写代码时更具灵活性,如我们可以把消息转发给我们想要的对象,或者随意交换一个方法的实现等。
这种特性意味着Objective-C不仅需要一个编译器,还需要一个运行时系统来执行编译的代码。对于Objective-C来说,这个运行时系统就像一个操作系统一样:它让所有的工作可以正常的运行。这个运行时系统即Objc Runtime。Objc Runtime其实是一个Runtime库,它基本上是用C和汇编写的,这个库使得C语言有了面向对象的能力。
Runtime库主要做下面几件事:
- 封装:在这个库中,对象可以用C语言中的结构体表示,而方法可以用C函数来实现,另外再加上了一些额外的特性。这些结构体和函数被runtime函数封装后,我们就可以在程序运行时创建,检查,修改类、对象和它们的方法了。
- 找出方法的最终执行代码:当程序执行[object doSomething]时,会向消息接收者(object)发送一条消息(doSomething),runtime会根据消息接收者是否能响应该消息而做出不同的反应。这将在后面详细介绍。
Objective-C runtime目前有两个版本:Modern runtime和Legacy runtime。Modern Runtime 覆盖了64位的Mac OS X Apps,还有 ios Apps,Legacy Runtime 是早期用来给32位 Mac OS X Apps 用的,也就是可以不用管就是了。
在这一系列文章中,我们将介绍runtime的基本工作原理,以及如何利用它让我们的程序变得更加灵活。在本文中,我们先来介绍一下类与对象,这是面向对象的基础,我们看看在Runtime中,类是如何实现的。
类与对象基础数据结构
Class
Objective-C类是由Class类型来表示的,它实际上是一个指向objc_class结构体的指针。它的定义如下:
1
2
3
4
5
6
7
8
9
10
|
/// An opaque type that represents an Objective-C class. typedef struct objc_class *Class; /// Represents an instance of a class. struct objc_object { Class isa; }; /// A pointer to an instance of a class. typedef struct objc_object * id ; |
由此可见,Class是一个指向objc_class结构体的指针,而id是一个指向objc_object结构体的指针,其成员isa是一个指向objec_class结构体的指针。
查看objc/runtime.h中objc_class结构体的定义如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
|
struct objc_class { Class isa OBJC_ISA_AVAILABILITY; #if !__OBJC2__ Class super_class OBJC2_UNAVAILABLE; // 父类 const char *name OBJC2_UNAVAILABLE; // 类名 long version OBJC2_UNAVAILABLE; // 类的版本信息,默认为0 long info OBJC2_UNAVAILABLE; // 类信息,供运行期使用的一些位标识 long instance_size OBJC2_UNAVAILABLE; // 该类的实例变量大小 struct objc_ivar_list *ivars OBJC2_UNAVAILABLE; // 该类的成员变量链表 struct objc_method_list **methodLists OBJC2_UNAVAILABLE; // 方法定义的链表 struct objc_cache *cache OBJC2_UNAVAILABLE; // 方法缓存 struct objc_protocol_list *protocols OBJC2_UNAVAILABLE; // 协议链表 #endif } OBJC2_UNAVAILABLE; |
在这个定义中,下面几个字段是我们感兴趣的
- isa:需要注意的是在Objective-C中,所有的类自身也是一个对象,这个对象的Class里面也有一个isa指针,它指向metaClass(元类),我们会在后面介绍它。
- super_class:指向该类的父类,如果该类已经是最顶层的根类(如NSObject或NSProxy),则super_class为NULL。
- cache:用于缓存最近使用的方法。一个接收者对象接收到一个消息时,它会根据isa指针去查找能够响应这个消息的对象。在实际使用中,这个对象只有一部分方法是常用的,很多方法其实很少用或者根本用不上。这种情况下,如果每次消息来时,我们都是methodLists中遍历一遍,性能势必很差。这时,cache就派上用场了。在我们每次调用过一个方法后,这个方法就会被缓存到cache列表中,下次调用的时候runtime就会优先去cache中查找,如果cache没有,才去methodLists中查找方法。这样,对于那些经常用到的方法的调用,但提高了调用的效率。
- version:我们可以使用这个字段来提供类的版本信息。这对于对象的序列化非常有用,它可是让我们识别出不同类定义版本中实例变量布局的改变。
针对cache,我们用下面例子来说明其执行过程:
1
|
NSArray *array = [[ NSArray alloc] init]; |
其流程是:
- [NSArray alloc]先被执行。因为NSArray没有+alloc方法,于是去父类NSObject去查找。
- 检测NSObject是否响应+alloc方法,发现响应,于是检测NSArray类,并根据其所需的内存空间大小开始分配内存空间,然后把isa指针指向NSArray类。同时,+alloc也被加进cache列表里面。
- 接着,执行-init方法,如果NSArray响应该方法,则直接将其加入cache;如果不响应,则去父类查找。
- 在后期的操作中,如果再以[[NSArray alloc] init]这种方式来创建数组,则会直接从cache中取出相应的方法,直接调用。
objc_object与id
objc_object是表示一个类的实例的结构体,它的定义如下(objc/objc.h):
1
2
3
4
5
6
7
|
struct objc_object { Class isa OBJC_ISA_AVAILABILITY; }; typedef struct objc_object * id ; |
可以看到,这个结构体只有一个字体,即指向其类的isa指针。这样,当我们向一个Objective-C对象发送消息时,运行时库会根据实例对象的isa指针找到这个实例对象所属的类。Runtime库会在类的方法列表及父类的方法列表中去寻找与消息对应的selector指向的方法。找到后即运行这个方法。
当创建一个特定类的实例对象时,分配的内存包含一个objc_object数据结构,然后是类的实例变量的数据。NSObject类的alloc和allocWithZone:方法使用函数class_createInstance来创建objc_object数据结构。
另外还有我们常见的id,它是一个objc_object结构类型的指针。它的存在可以让我们实现类似于C++中泛型的一些操作。该类型的对象可以转换为任何一种对象,有点类似于C语言中void *指针类型的作用。
objc_cache
上面提到了objc_class结构体中的cache字段,它用于缓存调用过的方法。这个字段是一个指向objc_cache结构体的指针,其定义如下:
1
2
3
4
5
6
7
8
9
|
struct objc_cache { unsigned int mask /* total = mask + 1 */ OBJC2_UNAVAILABLE; unsigned int occupied OBJC2_UNAVAILABLE; Method buckets[1] OBJC2_UNAVAILABLE; }; |
该结构体的字段描述如下:
- mask:一个整数,指定分配的缓存bucket的总数。在方法查找过程中,Objective-C runtime使用这个字段来确定开始线性查找数组的索引位置。指向方法selector的指针与该字段做一个AND位操作(index = (mask & selector))。这可以作为一个简单的hash散列算法。
- occupied:一个整数,指定实际占用的缓存bucket的总数。
- buckets:指向Method数据结构指针的数组。这个数组可能包含不超过mask+1个元素。需要注意的是,指针可能是NULL,表示这个缓存bucket没有被占用,另外被占用的bucket可能是不连续的。这个数组可能会随着时间而增长。
元类(Meta Class)
在上面我们提到,所有的类自身也是一个对象,我们可以向这个对象发送消息(即调用类方法)。如:
1
|
NSArray *array = [ NSArray array]; |
这个例子中,+array消息发送给了NSArray类,而这个NSArray也是一个对象。既然是对象,那么它也是一个objc_object指针,它包含一个指向其类的一个isa指针。那么这些就有一个问题了,这个isa指针指向什么呢?为了调用+array方法,这个类的isa指针必须指向一个包含这些类方法的一个objc_class结构体。这就引出了meta-class的概念
1
|
meta- class 是一个类对象的类。 |
当我们向一个对象发送消息时,runtime会在这个对象所属的这个类的方法列表中查找方法;而向一个类发送消息时,会在这个类的meta-class的方法列表中查找。
meta-class之所以重要,是因为它存储着一个类的所有类方法。每个类都会有一个单独的meta-class,因为每个类的类方法基本不可能完全相同。
再深入一下,meta-class也是一个类,也可以向它发送一个消息,那么它的isa又是指向什么呢?为了不让这种结构无限延伸下去,Objective-C的设计者让所有的meta-class的isa指向基类的meta-class,以此作为它们的所属类。即,任何NSObject继承体系下的meta-class都使用NSObject的meta-class作为自己的所属类,而基类的meta-class的isa指针是指向它自己。这样就形成了一个完美的闭环。
通过上面的描述,再加上对objc_class结构体中super_class指针的分析,我们就可以描绘出类及相应meta-class类的一个继承体系了,如下图所示:
对于NSObject继承体系来说,其实例方法对体系中的所有实例、类和meta-class都是有效的;而类方法对于体系内的所有类和meta-class都是有效的。
讲了这么多,我们还是来写个例子吧:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
|
#import "ViewController.h" #import <objc/runtime.h> @interface ViewController () @end void TextMetaCLass( id self , SEL _cmd); @implementation ViewController void TextMetaCLass( id self , SEL _cmd){ NSLog (@ "This Object is %p" , self ); NSLog (@ "Class is %@, super class is %@" ,[ self class ],[ self superclass]); Class currentClass = [ self class ]; for ( int i = 0; i < 4; i++) { NSLog (@ "Following the isa pointer %d times gives %p" , i ,currentClass); /** * 获取类对象 * * @param object 想要获取的类 * * @return 类对象或nil */ currentClass = objc_getClass((__bridge void *)currentClass); } NSLog (@ "NSObject\'s class is %p" , [ NSError class ]); NSLog (@ "NSObject\'s meta class is %p" , objc_getClass((__bridge void *)[ NSError class ])); } - ( void )viewDidLoad { [ super viewDidLoad]; /** * 创建一个新的类 * * @param superclass 作为新类的父类,若为空,则为根类 * @param name 新类的名字 * @param extraBytes 为类或元类对象分配字节数,通常都是为0 * * @return 新类或为空nil(如果创建不成功:新的类名已经存在) */ Class newClass = objc_allocateClassPair([ NSError class ], "TestClass" , 0); /** * 为新类添加新方法(注意:不可同名) * * @param newClass 要添加方法的类 * @param testMetaClass 将要添加的方法名字 * @param imp 函数方法的声明 ,且该函数至少有两个参数对象,分别为self 和 _cmd. * @param types 字符数组用于描述方法中的参数类型,因为方法中必须有self 和 _cmd 这两个参数,所以第二个跟第三个字符必须是“@:” * @return YES 添加方法成功 NO 添加方法失败 */ class_addMethod(newClass, @selector (testMetaClass), (IMP)TextMetaCLass, "v@:" ); /** * 为类添加新的实例变量(注意:不支持为现有的类、元类添加实例变量) * * @param cls 要添加实例变量的类对象 * @param name 变量名字 * @param size 为变量分配内存空间 * @param alignment * @param types 变量的类型 * * @return YES 添加实例变量成功 NO 添加实例变量失败 */ //class_addIvar(<#__unsafe_unretained Class cls#>, <#const char *name#>, <#size_t size#>, <#uint8_t alignment#>, <#const char *types#>) /** * 注册通过方法objc_allocateClassPair创建的类 * * @param cls 即开发者创建的类 */ objc_registerClassPair(newClass); id instance = [[newClass alloc] initWithDomain:@ "some domain" code:0 userInfo: nil ]; [instance performSelector: @selector (testMetaClass)]; } |
这个例子是在运行时创建了一个NSError的子类TestClass,然后为这个子类添加一个方法testMetaClass,这个方法的实现是TestMetaClass函数。
运行后,打印结果是
1
2
3
4
5
6
7
8
|
2016-08-11 14:47:55.559 Runtime1-类与对象[27720:1858642] This Object is 0x7fcbd8d4dc20 2016-08-11 14:47:55.560 Runtime1-类与对象[27720:1858642] Class is TestClass, super class is NSError 2016-08-11 14:47:55.560 Runtime1-类与对象[27720:1858642] Following the isa pointer 0 times gives 0x7fcbd8d276d0 2016-08-11 14:47:55.560 Runtime1-类与对象[27720:1858642] Following the isa pointer 1 times gives 0x0 2016-08-11 14:47:55.560 Runtime1-类与对象[27720:1858642] Following the isa pointer 2 times gives 0x0 2016-08-11 14:47:55.560 Runtime1-类与对象[27720:1858642] Following the isa pointer 3 times gives 0x0 2016-08-11 14:47:55.560 Runtime1-类与对象[27720:1858642] NSObject \'s class is 0x106854a88 2016-08-11 14:47:55.560 Runtime1-类与对象[27720:1858642] NSObject \'s meta class is 0x0 |
我们在for循环中,我们通过objc_getClass来获取对象的isa,并将其打印出来,依此一直回溯到NSObject的meta-class。分析打印结果,可以看到最后指针指向的地址是0x0,即NSObject的meta-class的类地址。
这里需要注意的是:我们在一个类对象调用class方法是无法获取meta-class,它只是返回类而已。
类与对象操作函数
runtime提供了大量的函数来操作类与对象。类的操作方法大部分是以class为前缀的,而对象的操作方法大部分是以objc或object_为前缀。下面我们将根据这些方法的用途来分类讨论这些方法的使用。
类相关操作函数
我们可以回过头去看看objc_class的定义,runtime提供的操作类的方法主要就是针对这个结构体中的各个字段的。下面我们分别介绍这一些的函数。并在最后以实例来演示这些函数的具体用法。
类名(name)
类名操作的函数主要有:
1
2
3
|
// 获取类的类名 const char * class_getName ( Class cls ); |
● 对于class_getName函数,如果传入的cls为Nil,则返回一个字字符串。
父类(super_class)和元类(meta-class)
父类和元类操作的函数主要有:
1
2
3
4
5
6
7
8
9
|
// 获取类的父类 Class class_getSuperclass ( Class cls ); // 判断给定的Class是否是一个元类 BOOL class_isMetaClass ( Class cls ); |
● class_getSuperclass函数,当cls为Nil或者cls为根类时,返回Nil。不过通常我们可以使用NSObject类的superclass方法来达到同样的目的。
● class_isMetaClass函数,如果是cls是元类,则返回YES;如果否或者传入的cls为Nil,则返回NO。
实例变量大小(instance_size)
实例变量大小操作的函数有:
1
2
3
|
// 获取实例大小 size_t class_getInstanceSize ( Class cls ); |
成员变量(ivars)及属性
在objc_class中,所有的成员变量、属性的信息是放在链表ivars中的。ivars是一个数组,数组中每个元素是指向Ivar(变量信息)的指针。runtime提供了丰富的函数来操作这一字段。大体上可以分为以下几类:
1.成员变量操作函数,主要包含以下函数:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
// 获取类中指定名称实例成员变量的信息 Ivar class_getInstanceVariable ( Class cls, const char *name ); // 获取类成员变量的信息 Ivar class_getClassVariable ( Class cls, const char *name ); // 添加成员变量 BOOL class_addIvar ( Class cls, const char *name, size_t size, uint8_t alignment, const char *types ); // 获取整个成员变量列表 Ivar * class_copyIvarList ( Class cls, unsigned int *outCount ); |
● class_getInstanceVariable函数,它返回一个指向包含name指定的成员变量信息的objc_ivar结构体的指针(Ivar)。
● class_getClassVariable函数,目前没有找到关于Objective-C中类变量的信息,一般认为Objective-C不支持类变量。注意,返回的列表不包含父类的成员变量和属性。
● Objective-C不支持往已存在的类中添加实例变量,因此不管是系统库提供的类,还是我们自定义的类,都无法动态添加成员变量。但如果我们通过运行时来创建一个类的话,又应该如何给它添加成员变量呢?这时我们就可以使用class_addIvar函数了。不过需要注意的是,这个方法只能在objc_allocateClassPair函数与objc_registerClassPair之间调用。另外,这个类也不能是元类。成员变量的按字节最小对齐量是1<<alignment。这取决于ivar的类型和机器的架构。如果变量的类型是指针类型,则传递log2(sizeof(pointer_type))。
● class_copyIvarList函数,它返回一个指向成员变量信息的数组,数组中每个元素是指向该成员变量信息的objc_ivar结构体的指针。这个数组不包含在父类中声明的变量。outCount指针返回数组的大小。需要注意的是,我们必须使用free()来释放这个数组。
2.属性操作函数,主要包含以下函数:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
// 获取指定的属性 objc_property_t class_getProperty ( Class cls, const char *name ); // 获取属性列表 objc_property_t * class_copyPropertyList ( Class cls, unsigned int *outCount ); // 为类添加属性 BOOL class_addProperty ( Class cls, const char *name, const objc_property_attribute_t *attributes, unsigned int attributeCount ); // 替换类的属性 void class_replaceProperty ( Class cls, const char *name, const objc_property_attribute_t *attributes, unsigned int attributeCount ); |
这一种方法也是针对ivars来操作,不过只操作那些是属性的值。我们在后面介绍属性时会再遇到这些函数。
3.在MAC OS X系统中,我们可以使用垃圾回收器。runtime提供了几个函数来确定一个对象的内存区域是否可以被垃圾回收器扫描,以处理strong/weak引用。这几个函数定义如下:
1
2
3
4
5
6
7
|
const uint8_t * class_getIvarLayout ( Class cls ); void class_setIvarLayout ( Class cls, const uint8_t *layout ); const uint8_t * class_getWeakIvarLayout ( Class cls ); void class_setWeakIvarLayout ( Class cls, const uint8_t *layout ); |
但通常情况下,我们不需要去主动调用这些方法;在调用objc_registerClassPair时,会生成合理的布局。在此不详细介绍这些函数。
方法(methodLists)
方法操作主要有以下函数:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
|
// 添加方法 BOOL class_addMethod ( Class cls, SEL name, IMP imp, const char *types );
|