『cs231n』作业2选讲_通过代码理解卷积层&池化层
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了『cs231n』作业2选讲_通过代码理解卷积层&池化层相关的知识,希望对你有一定的参考价值。
卷积层
卷积层向前传播示意图:
def conv_forward_naive(x, w, b, conv_param): """ A naive implementation of the forward pass for a convolutional layer. The input consists of N data points, each with C channels, height H and width W. We convolve each input with F different filters, where each filter spans all C channels and has height HH and width HH. Input: - x: Input data of shape (N, C, H, W) - w: Filter weights of shape (F, C, HH, WW) - b: Biases, of shape (F,) - conv_param: A dictionary with the following keys: - ‘stride‘: The number of pixels between adjacent receptive fields in the horizontal and vertical directions. - ‘pad‘: The number of pixels that will be used to zero-pad the input. Returns a tuple of: - out: Output data, of shape (N, F, H‘, W‘) where H‘ and W‘ are given by H‘ = 1 + (H + 2 * pad - HH) / stride W‘ = 1 + (W + 2 * pad - WW) / stride - cache: (x, w, b, conv_param) """ out = None ############################################################################# # TODO: Implement the convolutional forward pass. # # Hint: you can use the function np.pad for padding. # ############################################################################ pad = conv_param[‘pad‘] stride = conv_param[‘stride‘] N, C, H, W = x.shape F, _, HH, WW = w.shape H0 = 1 + (H + 2 * pad - HH) / stride W0 = 1 + (W + 2 * pad - WW) / stride x_pad = np.pad(x, ((0,0),(0,0),(pad,pad),(pad,pad)),‘constant‘) # 填充后的输入 out = np.zeros((N,F,H0,W0)) # 初始化的输出 # 以输出的每一个像素点为单位写出其前传表达式 for n in range(N): for f in range(F): for h0 in range(H0): for w0 in range(W0): out[n,f,h0,w0] = np.sum(x_pad[n,:,h0*stride:HH+h0*stride,w0*stride:WW+w0*stride] * w[f]) + b[f] ############################################################################# # END OF YOUR CODE # ############################################################################# cache = (x, w, b, conv_param) return out, cache
卷积层反向传播示意图:
def conv_backward_naive(dout, cache): """ A naive implementation of the backward pass for a convolutional layer. Inputs: - dout: Upstream derivatives. - cache: A tuple of (x, w, b, conv_param) as in conv_forward_naive Returns a tuple of: - dx: Gradient with respect to x - dw: Gradient with respect to w - db: Gradient with respect to b """ dx, dw, db = None, None, None ############################################################################# # TODO: Implement the convolutional backward pass. # ############################################################################# x, w, b, conv_param = cache pad = conv_param[‘pad‘] stride = conv_param[‘stride‘] N, C, H, W = x.shape F, _, HH, WW = w.shape _, _, H0, W0 = out.shape x_pad = np.pad(x, [(0,0), (0,0), (pad,pad), (pad,pad)], ‘constant‘) dx, dw = np.zeros_like(x), np.zeros_like(w) dx_pad = np.pad(dx, [(0,0), (0,0), (pad,pad), (pad,pad)], ‘constant‘) # 计算b的梯度(F,) db = np.sum(dout, axis=(0,2,3)) # dout:(N,F,H0,W0) # 以每一个dout点为基准计算其两个输入矩阵x(:,:,窗,窗)和w(f)的梯度,注意由于这两个矩阵都是多次参与运算,所以都是累加的关系 for n in range(N): for f in range(F): for h0 in range(H0): for w0 in range(W0): x_win = x_pad[n,:,h0*stride:h0*stride+HH,w0*stride:w0*stride+WW] dw[f] += x_win * dout[n,f,h0,w0] dx_pad[n,:,h0*stride:h0*stride+HH,w0*stride:w0*stride+WW] += w[f] * dout[n,f,h0,w0] dx = dx_pad[:,:,pad:pad+H,pad:pad+W] ############################################################################# # END OF YOUR CODE # ############################################################################# return dx, dw, db
池化层(亦下采样层)
池化层向前传播:
和卷积层类似,但是更简单一点,只要在对应feature map的原输入上取个窗口然后池化之即可,
def max_pool_forward_naive(x, pool_param): HH, WW = pool_param[‘pool_height‘], pool_param[‘pool_width‘] s = pool_param[‘stride‘] N, C, H, W = x.shape H_new = 1 + (H - HH) / s W_new = 1 + (W - WW) / s out = np.zeros((N, C, H_new, W_new)) for i in xrange(N): for j in xrange(C): for k in xrange(H_new): for l in xrange(W_new): window = x[i, j, k*s:HH+k*s, l*s:WW+l*s] out[i, j, k, l] = np.max(window) cache = (x, pool_param) return out, cache
池化层反向传播:
反向传播的时候也是还原窗口,除最大值处继承上层梯度外(也就是说本层梯度为零),其他位置置零。
池化层没有过滤器,只有dx梯度,且x的窗口不像卷积层会重叠,所以不用累加,
def max_pool_backward_naive(dout, cache): x, pool_param = cache HH, WW = pool_param[‘pool_height‘], pool_param[‘pool_width‘] s = pool_param[‘stride‘] N, C, H, W = x.shape H_new = 1 + (H - HH) / s W_new = 1 + (W - WW) / s dx = np.zeros_like(x) for i in xrange(N): for j in xrange(C): for k in xrange(H_new): for l in xrange(W_new): window = x[i, j, k*s:HH+k*s, l*s:WW+l*s] m = np.max(window) dx[i, j, k*s:HH+k*s, l*s:WW+l*s] = (window == m) * dout[i, j, k, l] return dx
以上是关于『cs231n』作业2选讲_通过代码理解卷积层&池化层的主要内容,如果未能解决你的问题,请参考以下文章
『cs231n』作业1问题1选讲_通过代码理解K近邻算法&交叉验证选择超参数参数
[人工智能-深度学习-25]:卷积神经网络CNN - CS231n解读 - 卷积层详解