310. Minimum Height Trees
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了310. Minimum Height Trees相关的知识,希望对你有一定的参考价值。
For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels. Format The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels). You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges. Example 1: Given n = 4, edges = [[1, 0], [1, 2], [1, 3]] 0 | 1 / 2 3 return [1] Example 2: Given n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]] 0 1 2 \\ | / 3 | 4 | 5 return [3, 4] Note: (1) According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.” (2) The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf. Credits: Special thanks to @dietpepsi for adding this problem and creating all test cases.
剪枝法, 不能用队, 用剩余节点个数做while循环, 建立叶结点的容器当作队, 需要更新叶结点容器不能用队.
错误的做法: 跟207 Course Schedule有区别, 不能一味套, 因为这是无向图
public List<Integer> findMinHeightTrees(int n, int[][] edges) { if (n == 1) return Collections.singletonList(0); List<Integer> leaves = new ArrayList<>(); List[] adj = new ArrayList[n]; int[] indeg = new int[n]; for (int i = 0; i < n; i++) { adj[i] = new ArrayList<Integer>(); } for (int[] edge : edges) { adj[edge[0]].add(edge[1]); adj[edge[1]].add(edge[0]); indeg[edge[0]]++; indeg[edge[1]]++; } for (int i = 0; i < n; i++) { if (indeg[i] == 1) { leaves.add(i); } }
while (n > 2) { n -= leaves.size(); List<Integer> newList = new ArrayList<>(); for (int i : leaves) { int j = (int)adj[i].get(0); indeg[j]--; if (indeg[j] == 1) { newList.add(j); } } leaves = newList; } return leaves; } }
应改为:, 因为get(0) 不一定get到当前叶节点的下一个内靠的叶结点, 可能是已经遍历过得呢
while (n > 2) { n -= leaves.size(); List<Integer> newList = new ArrayList<>(); for (int i : leaves) { ArrayList<Integer> list = adj[i]; for (Integer k : list) { indeg[k]--; if (indeg[k] == 1) { newList.add(k); } } } leaves = newList; }
跟其最接近的题目是Course Schedule 课程清单和Course Schedule II 课程清单之二。由于LeetCode中的树的题目主要都是针对于二叉树的,而这道题虽说是树但其实本质是想考察图的知识,
用的hashmap 来替代arraylist[]: 这样的好处是方便键不是顺序的时候, 与数组本质是一样的, 但是存储的键更灵活, 应该学会用map
public class Solution { public List<Integer> findMinHeightTrees(int n, int[][] edges) { List<Integer> leaves = new ArrayList<Integer>(); if (edges==null || edges.length==0) { leaves.add(n-1); return leaves; } HashMap<Integer, ArrayList<Integer>> graph = new HashMap<Integer, ArrayList<Integer>>(); int[] indegree = new int[n]; for (int i=0; i<n; i++) { graph.put(i, new ArrayList<Integer>()); } //build the graph for (int[] edge : edges) { graph.get(edge[0]).add(edge[1]); graph.get(edge[1]).add(edge[0]); indegree[edge[0]]++; indegree[edge[1]]++; } //find the leaves for (int i=0; i<n; i++) { if (indegree[i] == 1) { leaves.add(i); } } //topological sort until n<=2 while (n > 2) { List<Integer> newLeaf = new ArrayList<Integer>(); for (Integer leaf : leaves) { List<Integer> neighbors = graph.get(leaf); for (Integer neighbor : neighbors) { indegree[neighbor]--; graph.get(neighbor).remove(leaf); if (indegree[neighbor] == 1) newLeaf.add(neighbor); } //delete leaf from graph n--; } leaves = newLeaf; } return leaves; } }
以上是关于310. Minimum Height Trees的主要内容,如果未能解决你的问题,请参考以下文章
leetcode 310. Minimum Height Trees 最小高度树(中等)