使用makecontext实现用户线程
Posted sky
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用makecontext实现用户线程相关的知识,希望对你有一定的参考价值。
转自:http://blog.csdn.net/cyberlabs/article/details/6920138
使用makecontext实现用户线程 现代Unix系统都在ucontext.h中提供用于上下文切换的函数,这些函数有getcontext, setcontext,swapcontext 和makecontext。其中,getcontext用于保存当前上下文,setcontext用于切换上下文,swapcontext会保存当前上下文并切换到另一个上下文,makecontext创建一个新的上下文。实现用户线程的过程是:我们首先调用getcontext获得当前上下文,然后修改ucontext_t指定新的上下文。同样的,我们需要开辟栈空间,但是这次实现的线程库要涉及栈生长的方向。然后我们调用makecontext切换上下文,并指定用户线程中要执行的函数。 在这种实现中还有一个挑战,即一个线程必须可以主动让出CPU给其它线程。swapcontext函数可以完成这个任务,图4展示了一个这种实现的样例程序,child线程和parent线程不断切换以达到多线程的效果。在libfiber-uc.c文件中可以看到完整的实现。 #include #include #include // 64kB stack #define FIBER_STACK 1024*64 ucontext_t child, parent; // The child thread will execute this function void threadFunction() { printf( "Child fiber yielding to parent" ); swapcontext( &child, &parent ); printf( "Child thread exiting\n" ); swapcontext( &child, &parent ); } int main() { // Get the current execution context getcontext( &child ); // Modify the context to a new stack child.uc_link = 0; child.uc_stack.ss_sp = malloc( FIBER_STACK ); child.uc_stack.ss_size = FIBER_STACK; child.uc_stack.ss_flags = 0; if ( child.uc_stack.ss_sp == 0 ) { perror( "malloc: Could not allocate stack" ); exit( 1 ); } // Create the new context printf( "Creating child fiber\n" ); makecontext( &child, &threadFunction, 0 ); // Execute the child context printf( "Switching to child fiber\n" ); swapcontext( &parent, &child ); printf( "Switching to child fiber again\n" ); swapcontext( &parent, &child ); // Free the stack free( child.uc_stack.ss_sp ); printf( "Child fiber returned and stack freed\n" ); return 0; } 图4用makecontext实现线程 用户级线程的抢占 抢占实现的一个最重要的因素就是定时触发的计时器中断,它的存在使得我们能够中断当前程序的执行,异步对进程的时间片消耗情况进行统计,并在必要的时候(可能是时间片耗尽,也可能是一个高优先级的程序就绪)从当前进程调度到其它进程去执行。 对于用户空间程序来说,与内核空间的中断相对应的就是信号,它和中断一样都是异步触发,并能引起执行流的跳转。所以要想实现用户级线程的抢占,我们可以借助定时器信号(SIGALRM),必要时在信号处理程序内部进行上下文的切换。 为了验证自己的想法,我在上篇文章提到的协同多线程的基础上加上了相关抢占代码,具体实现如下: #include <stdlib.h> #include <stdio.h> #include <ucontext.h> #include <sys/time.h> #define STACK_SIZE 4096 #define UTHREAD_MAX_NUM 256 #define INIT_TICKS 10 typedef int uthread_t; typedef void uthread_attr_t; uthread_t current = 0; #define uthread_self() current struct uthread_struct { int used; ucontext_t context; char stack[STACK_SIZE]; void* (*func)(void *arg); void *arg; void *exit_status; int ticks; }; static struct uthread_struct uthread_slots[UTHREAD_MAX_NUM]; void panic(void) { fprintf(stderr, "Panic, bala bala...\n"); exit(EXIT_FAILURE); } void idle_thread(void) { int i; for (i = 1; i < UTHREAD_MAX_NUM; i ++) if (uthread_slots[i].used) break; if (i == UTHREAD_MAX_NUM) panic(); if (current != 0) uthread_slots[current].used = 0; current = i; swapcontext(&uthread_slots[0].context,&uthread_slots[current].context); } void uthread_context_init(int tid) { getcontext(&uthread_slots[tid].context); uthread_slots[tid].context.uc_stack.ss_sp = uthread_slots[tid].stack; uthread_slots[tid].context.uc_stack.ss_size =sizeof(uthread_slots[tid].stack); uthread_slots[tid].context.uc_link = &uthread_slots[0].context; } void uthread_init(void) { uthread_context_init(0); uthread_slots[0].used = 1; makecontext(&uthread_slots[0].context, idle_thread, 0); } void uthread_schedule(void); void uthread_exit(void *exit_status) { uthread_slots[current].exit_status = exit_status; uthread_slots[current].used = 0; uthread_schedule(); } void uthread_helper(void) { uthread_exit(uthread_slots[current].func(uthread_slots[current].arg)); } int uthread_create(uthread_t *thread, const uthread_attr_t *attr, void* (*start_routine)(void*), void *arg) { static int last_used = 0; int i; for (i = (last_used + 1) % UTHREAD_MAX_NUM; i != last_used; i = (i + 1) % UTHREAD_MAX_NUM) if (!uthread_slots[i].used) break; if (i == last_used) return -1; last_used = i; if (thread != NULL) *thread = i; uthread_context_init(i); uthread_slots[i].used = 1; uthread_slots[i].func = start_routine; uthread_slots[i].arg = arg; uthread_slots[i].exit_status = 0; uthread_slots[i].ticks = uthread_slots[current].ticks / 2; uthread_slots[current].ticks -= uthread_slots[i].ticks; makecontext(&uthread_slots[i].context, uthread_helper, 0); return 0; } void uthread_schedule(void) { int i, prev; for (i = (current + 1) % UTHREAD_MAX_NUM; i != current; i = (i + 1) % UTHREAD_MAX_NUM) if (uthread_slots[i].used) break; if (i == current) panic(); prev = current; current = i; swapcontext(&uthread_slots[prev].context,&uthread_slots[current].context); } void* thread(void *arg) { int i; for (i = 0; 1; i ++) { if (i % 1000 == 0) printf("thread/%d(%s): i = %d\n", current, (char*)arg,i); uthread_create(NULL, NULL, thread, arg); if (i % 1000000 == 0) uthread_schedule(); } } void sig_ticks_timer(int signo) { if (--uthread_slots[current].ticks <= 0) { uthread_slots[current].ticks = INIT_TICKS; uthread_schedule(); } } int main(int argc, char *argv[]) { uthread_t tid; struct itimerval ticks_timer; uthread_init(); uthread_create(&tid, NULL, thread, "hw1"); printf("tid is %d\n", tid); uthread_create(&tid, NULL, thread, "hw2"); printf("tid is %d\n", tid); signal(SIGALRM, sig_ticks_timer); ticks_timer.it_interval.tv_sec = 0; ticks_timer.it_interval.tv_usec = 10000; ticks_timer.it_value.tv_sec = 0; ticks_timer.it_value.tv_usec = 10000; setitimer(ITIMER_REAL, &ticks_timer, NULL); while (1) idle_thread(); return 0; } 似乎该有的都有了,也许真的可以在用户空间实现一个虚拟的操作系统环境玩呢...
以上是关于使用makecontext实现用户线程的主要内容,如果未能解决你的问题,请参考以下文章
setcontext 和 makecontext 调用通用函数指针