MySQL 索引优化器选择索引的规则是啥?

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MySQL 索引优化器选择索引的规则是啥?相关的知识,希望对你有一定的参考价值。

在开始演示之前,我们先介绍下两个概念。


概念一,数据的可选择性基数,也就是常说的cardinality值。


查询优化器在生成各种执行计划之前,得先从统计信息中取得相关数据,这样才能估算每步操作所涉及到的记录数,而这个相关数据就是cardinality。简单来说,就是每个值在每个字段中的唯一值分布状态。


比如表t1有100行记录,其中一列为f1。f1中唯一值的个数可以是100个,也可以是1个,当然也可以是1到100之间的任何一个数字。这里唯一值越的多少,就是这个列的可选择基数。


那看到这里我们就明白了,为什么要在基数高的字段上建立索引,而基数低的的字段建立索引反而没有全表扫描来的快。当然这个只是一方面,至于更深入的探讨就不在我这篇探讨的范围了。


概念二,关于HINT的使用。


这里我来说下HINT是什么,在什么时候用。


HINT简单来说就是在某些特定的场景下人工协助mysql优化器的工作,使她生成最优的执行计划。一般来说,优化器的执行计划都是最优化的,不过在某些特定场景下,执行计划可能不是最优化。


比如:表t1经过大量的频繁更新操作,(UPDATE,DELETE,INSERT),cardinality已经很不准确了,这时候刚好执行了一条SQL,那么有可能这条SQL的执行计划就不是最优的。为什么说有可能呢?


来看下具体演示


譬如,以下两条SQL,

    A:

    select * from t1 where f1 = 20;

    B:

    select * from t1 where f1 = 30;

    如果f1的值刚好频繁更新的值为30,并且没有达到MySQL自动更新cardinality值的临界值或者说用户设置了手动更新又或者用户减少了sample page等等,那么对这两条语句来说,可能不准确的就是B了。

    这里顺带说下,MySQL提供了自动更新和手动更新表cardinality值的方法,因篇幅有限,需要的可以查阅手册。

    那回到正题上,MySQL 8.0 带来了几个HINT,我今天就举个index_merge的例子。

    示例表结构:

    mysql> desc t1;+------------+--------------+------+-----+---------+----------------+| Field      | Type         | Null | Key | Default | Extra          |+------------+--------------+------+-----+---------+----------------+| id         | int(11)      | NO   | PRI | NULL    | auto_increment || rank1      | int(11)      | YES  | MUL | NULL    |                || rank2      | int(11)      | YES  | MUL | NULL    |                || log_time   | datetime     | YES  | MUL | NULL    |                || prefix_uid | varchar(100) | YES  |     | NULL    |                || desc1      | text         | YES  |     | NULL    |                || rank3      | int(11)      | YES  | MUL | NULL    |                |+------------+--------------+------+-----+---------+----------------+7 rows in set (0.00 sec)

    表记录数:

    mysql> select count(*) from t1;+----------+| count(*) |+----------+|    32768 |+----------+1 row in set (0.01 sec)

    这里我们两条经典的SQL:

    SQL C:

    select * from t1 where rank1 = 1 or rank2 = 2 or rank3 = 2;

    SQL D:

    select * from t1 where rank1 =100  and rank2 =100  and rank3 =100;

    表t1实际上在rank1,rank2,rank3三列上分别有一个二级索引。

    那我们来看SQL C的查询计划。

    显然,没有用到任何索引,扫描的行数为32034,cost为3243.65。

    mysql> explain  format=json select * from t1  where rank1 =1 or rank2 = 2 or rank3 = 2\\G*************************** 1. row ***************************EXPLAIN:  "query_block":    "select_id": 1,    "cost_info":      "query_cost": "3243.65"    ,    "table":      "table_name": "t1",      "access_type": "ALL",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "rows_examined_per_scan": 32034,      "rows_produced_per_join": 115,      "filtered": "0.36",      "cost_info":        "read_cost": "3232.07",        "eval_cost": "11.58",        "prefix_cost": "3243.65",        "data_read_per_join": "49K"      ,      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))"      1 row in set, 1 warning (0.00 sec)

    我们加上hint给相同的查询,再次看看查询计划。

    这个时候用到了index_merge,union了三个列。扫描的行数为1103,cost为441.09,明显比之前的快了好几倍。

    mysql> explain  format=json select /*+ index_merge(t1) */ * from t1  where rank1 =1 or rank2 = 2 or rank3 = 2\\G*************************** 1. row ***************************EXPLAIN:  "query_block":    "select_id": 1,    "cost_info":      "query_cost": "441.09"    ,    "table":      "table_name": "t1",      "access_type": "index_merge",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "union(idx_rank1,idx_rank2,idx_rank3)",      "key_length": "5,5,5",      "rows_examined_per_scan": 1103,      "rows_produced_per_join": 1103,      "filtered": "100.00",      "cost_info":        "read_cost": "330.79",        "eval_cost": "110.30",        "prefix_cost": "441.09",        "data_read_per_join": "473K"      ,      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank1` = 1) or (`ytt`.`t1`.`rank2` = 2) or (`ytt`.`t1`.`rank3` = 2))"      1 row in set, 1 warning (0.00 sec)

    我们再看下SQL D的计划:

    不加HINT,

    mysql> explain format=json select * from t1 where rank1 =100 and rank2 =100 and rank3 =100\\G*************************** 1. row ***************************EXPLAIN:  "query_block":    "select_id": 1,    "cost_info":      "query_cost": "534.34"    ,    "table":      "table_name": "t1",      "access_type": "ref",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "idx_rank1",      "used_key_parts": [        "rank1"      ],      "key_length": "5",      "ref": [        "const"      ],      "rows_examined_per_scan": 555,      "rows_produced_per_join": 0,      "filtered": "0.07",      "cost_info":        "read_cost": "478.84",        "eval_cost": "0.04",        "prefix_cost": "534.34",        "data_read_per_join": "176"      ,      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100))"      1 row in set, 1 warning (0.00 sec)

    加了HINT,

    mysql> explain format=json select /*+ index_merge(t1)*/ * from t1 where rank1 =100 and rank2 =100 and rank3 =100\\G*************************** 1. row ***************************EXPLAIN:  "query_block":    "select_id": 1,    "cost_info":      "query_cost": "5.23"    ,    "table":      "table_name": "t1",      "access_type": "index_merge",      "possible_keys": [        "idx_rank1",        "idx_rank2",        "idx_rank3"      ],      "key": "intersect(idx_rank1,idx_rank2,idx_rank3)",      "key_length": "5,5,5",      "rows_examined_per_scan": 1,      "rows_produced_per_join": 1,      "filtered": "100.00",      "cost_info":        "read_cost": "5.13",        "eval_cost": "0.10",        "prefix_cost": "5.23",        "data_read_per_join": "440"      ,      "used_columns": [        "id",        "rank1",        "rank2",        "log_time",        "prefix_uid",        "desc1",        "rank3"      ],      "attached_condition": "((`ytt`.`t1`.`rank3` = 100) and (`ytt`.`t1`.`rank2` = 100) and (`ytt`.`t1`.`rank1` = 100))"      1 row in set, 1 warning (0.00 sec)

    对比下以上两个,加了HINT的比不加HINT的cost小了100倍。

    总结下,就是说表的cardinality值影响这张的查询计划,如果这个值没有正常更新的话,就需要手工加HINT了。相信MySQL未来的版本会带来更多的HINT。

参考技术A optimizer_prune_level、optimizer_search_depth、optimizer_switch另外至于MySQL查询优化器的规则资料,我也没有找到专门的资料,对于你的标题MySQL手册章节:7.2. Obtaining Query Execution Plan Information7.5. Optimization and Indexes基本上问题就不大了,当然这2个章节告诉你的是索引及SQL优化技术理论基础,还必须结合本回答被提问者采纳

order by limit 造成优化器选择索引错误

原创 https://developer.aliyun.com/...

MySQL · 捉虫动态 · order by limit 造成优化器选择索引错误

简介: 问题描述 bug 触发条件如下: 优化器先选择了 where 条件中字段的索引,该索引过滤性较好; SQL 中必须有 order by limit 从而引导优化器尝试使用 order by 字段上的索引进行优化,最终因代价问题没有成功。 复现case 表结构 create table t

问题描述

bug 触发条件如下:

  1. 优化器先选择了 where 条件中字段的索引,该索引过滤性较好;
  2. SQL 中必须有 order by limit 从而引导优化器尝试使用 order by 字段上的索引进行优化,最终因代价问题没有成功。

复现case

表结构

create table t1(
      id int auto_increment primary key,
      a int, b int, c int,
      key iabc (a, b, c),
      key ic (c)
) engine = innodb; 

构造数据

insert into t1 select null,null,null,null;
insert into t1 select null,null,null,null from t1;
insert into t1 select null,null,null,null from t1;
insert into t1 select null,null,null,null from t1;
insert into t1 select null,null,null,null from t1;
insert into t1 select null,null,null,null from t1;
update t1 set a = id / 2, b = id / 4, c = 6 - id / 8; 

触发SQL

mysql> explain select id from t1 where a<3 and b in (1, 13) and c>=3 order by c limit 2G
*************************** 1. row ***************************
 id: 1
  select_type: SIMPLE
 table: t1
 type: index
possible_keys: iabc,ic
 key: iabc
 key_len: 15
 ref: NULL
 rows: 32
 Extra: Using where; Using index; Using filesort 

使用 force index 可以选择过滤性好的索引

mysql> explain select id from t1 force index(iabc) where a<3 and b in (1, 13) and c>=3 order by c limit 2G
*************************** 1. row ***************************
 id: 1
  select_type: SIMPLE
 table: t1
 type: range
possible_keys: iabc
 key: iabc
 key_len: 5
 ref: NULL
 rows: 3
 Extra: Using where; Using index; Using filesort 

问题分析

optimizer_trace 可以帮助分析这个问题。

SELECT * FROM INFORMATION_SCHEMA.OPTIMIZER_TRACEG

 "range_scan_alternatives": [
                  {
                    "index": "iabc",
                    "ranges": [
                      "NULL < a < 3"
                    ],
                    "index_dives_for_eq_ranges": true,
                    "rowid_ordered": false,
                    "using_mrr": false,
                    "index_only": true,
                    "rows": 3,
                    "cost": 1.6146,
                    "chosen": true
                  },
                  {
                    "index": "ic",
                    "ranges": [
                      "3 <= c"
                    ],
                    "index_dives_for_eq_ranges": true,
                    "rowid_ordered": false,
                    "using_mrr": false,
                    "index_only": false,
                    "rows": 17,
                    "cost": 21.41,
                    "chosen": false,
                    "cause": "cost"
                  }
                ], 

range_scan_alternatives 计算 range_scan,各个索引的开销,从上面的结果可以看出,联合索引 iabc 开销较小,应该选择 iabc。

 "considered_execution_plans": [
          {
            "plan_prefix": [
            ],
            "table": "`t1`",
            "best_access_path": {
              "considered_access_paths": [
                {
                  "access_type": "range",
                  "rows": 3,
                  "cost": 2.2146,
                  "chosen": true
                }
              ]
            },
            "cost_for_plan": 2.2146,
            "rows_for_plan": 3,
            "chosen": true
          }
        ] 

considered_execution_plans 表索引选择过程,access_type 是 range,rows_for_plan=3,到这里为止,执行计划还是符合预期的。

 {
        "clause_processing": {
          "clause": "ORDER BY",
          "original_clause": "`t1`.`c`",
          "items": [
            {
              "item": "`t1`.`c`"
            }
          ],
          "resulting_clause_is_simple": true,
          "resulting_clause": "`t1`.`c`"
        }
      },
      {
        "refine_plan": [
          {
            "table": "`t1`",
            "access_type": "index_scan"
          }
        ]
      },
      {
        "reconsidering_access_paths_for_index_ordering": {
          "clause": "ORDER BY",
          "index_order_summary": {
            "table": "`t1`",
            "index_provides_order": false,
            "order_direction": "undefined",
            "index": "unknown",
            "plan_changed": false
          }
        }
      } 

clause_processing 用于简化 order by,经过 clause_processing access_type 变成 index_scan(全索引扫描,过滤性较range差),此时出现了和预期不符的结果。

因此可以推测优化器试图优化 order by 时出现了错误:

  • 第一阶段,优化器选择了索引 iabc,采用 range 访问;
  • 第二阶段,优化器试图进一步优化执行计划,使用 order by 的列访问,并清空了第一阶段的结果;
  • 第三阶段,优化器发现使用 order by 的列访问,代价比第一阶段的结果更大,但是第一阶段结果已经被清空了,无法还原,于是选择了代价较大的访问方式(index_scan),触发了bug。

问题解决

  1. 我们在索引优化函数SQL_SELECT::test_quick_select 最开始的时候保存访问计划变量(quick);
  2. 在索引没变的时候,还原这个变量;
  3. 在索引发生改变的时候,删除这个变量。

在不修改 mysql 源码的情况下,可以通过 force index 强制指定索引规避这个bug。

SQL_SELECT::test_quick_select 调用栈如下

 #0  SQL_SELECT::test_quick_select
    #1  make_join_select
    #2  JOIN::optimize
    #3  mysql_execute_select
    #4  mysql_select
    #5  mysql_explain_unit
    #6  explain_query_expression
    #7  execute_sqlcom_select
    #8  mysql_execute_command
    #9  mysql_parse
    #10 dispatch_command
    #11 do_command

以上是关于MySQL 索引优化器选择索引的规则是啥?的主要内容,如果未能解决你的问题,请参考以下文章

order by limit 造成优化器选择索引错误

MySQL执行计划误选索引及修改方案

MySQL不走索引的原因

mysql有几种索引类型?使用索引时都有那些地方要注意?sql优化原则是啥?

如何为MySQL查询优化选择最佳索引

10 | MySQL为什么有时候会选错索引?