Implicit Recommender Systems
Posted Fassy
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Implicit Recommender Systems相关的知识,希望对你有一定的参考价值。
Based on Alternating Least Square
Alternating Least Square is a method to find the matrices X,Y given R The idea is to find the parameters which minimizes the L^2 cost function,
while regularization factor controls the speed of converge
Step:
1.fix X, optimize Y
2.fix Y, optimizr X
3.repeat until converge or reach the iteration number
Some algorithms about ALS
Implicit Feedback:Link
The basic approach is to forget about modeling the implicit feedback directly. Rather, we want to understand whether user
u
has a preference or not for item i
using a simple boolean variable which we denote by pui.pui. The number of clicks, listens, views, etc, will be interpreted as our confidence in our model.While for the implicit feedback, the formula changes:
where Cui is our confidence in Pui. That is, the more a user has interacted with an item, the more we penalize our model for incorrectly predicting pui
LightFM use Stochastic Gradient Descent
DIfference between ALS and gradient descent
Need fewer iterations to reach the convergence,because every step is actually minimize the cost function
以上是关于Implicit Recommender Systems的主要内容,如果未能解决你的问题,请参考以下文章
Slate-based Recommender Systems 论文解读
Item-Based Collaborative Recommender System
Ng第十六课:推荐系统(Recommender Systems)
推荐系统介绍:(协同过滤)—Intro to Recommender Systems: Collaborative Filtering
CreateML Recommender 训练错误:推荐模型中的项目 ID 必须编号为 0、1、...、num_items - 1