求GCD和LCM,即指求最大公约数和最小公倍数。
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了求GCD和LCM,即指求最大公约数和最小公倍数。相关的知识,希望对你有一定的参考价值。
求GCD和LCM,即指求最大公约数和最小公倍数。
写两个函数,分别求两个整数的最大公约数和最小公倍数,用主函数调用这两个函数并输出结果。两个整数在主函数中从键盘输入。
输入
每行输入2个正整数。若输入的2个整数中任何一个为0则结束输入。
假设这2个正整数的乘积值不会超过4个字节的表示范围。
输出
每行对应输出最大公约数和最小公倍数。
求大神指导
using namespace std;
int gcd(int a,int b)
if(b==0) return a;
else return gcd(b,a%b);
int lcm(int a,int b)
return a*b/gcd(a,b);
int main()
int a,b;
cin>>a>>b;
cout<<"GCD : "<<gcd(a,b)<<endl;
cout<<"LCM : "<<lcm(a,b)<<endl;
ACM数论之旅3---最大公约数gcd和最小公倍数lcm(苦海无边,回头是岸( ̄? ̄))
gcd(a, b),就是求a和b的最大公约数
lcm(a, b),就是求a和b的最小公倍数
然后有个公式
a*b = gcd * lcm ( gcd就是gcd(a, b), ( •?∀•? ) 简写你懂吗)
解释(不想看就跳过){
首先,求一个gcd,然后。。。
a / gcd 和 b / gcd 这两个数互质了,也就是 gcd( a / gcd ,b / gcd ) = 1,然后。。。
lcm = gcd * (a / gcd) * (b / gcd)
lcm = (a * b) / gcd
所以。。a*b = gcd * lcm
}
所以要求lcm,先求gcd
辣么,问题来了,gcd怎么求
辗转相除法
while循环
1 LL gcd(LL a, LL b){ 2 LL t; 3 while(b){ 4 t = b; 5 b = a % b; 6 a = t; 7 } 8 return a; 9 }
还有一个递归写法
1 LL gcd(LL a, LL b){ 2 if(b == 0) return a; 3 else return gcd(b, a%b); 4 } 5 6 LL gcd(LL a, LL b){ 7 return b ? gcd(b, a%b) : a; 8 } 9 //两种都可以
辣么,lcm = a * b / gcd
(注意,这样写法有可能会错,因为a * b可能因为太大 超出int 或者 超出 longlong)
所以推荐写成 : lcm = a / gcd * b
然后几个公式自己证明一下
gcd(ka, kb) = k * gcd(a, b)
lcm(ka, kb) = k * lcm(a, b)
上次做题碰到这个公式
lcm(S/a, S/b) = S/gcd(a, b)
S = 9,a = 4,b = 6,小数不会lcm,只好保留分数形式去通分约分。
当我看到右边那个公式。。。。
(╯°Д°)╯┻━┻
这TM我怎么想的到,给我证明倒是会证。 T_T
以上是关于求GCD和LCM,即指求最大公约数和最小公倍数。的主要内容,如果未能解决你的问题,请参考以下文章
描述编写求最大公约数的函数gcd和最小公倍数的函数lcm。 可以使用函数的嵌套调用,使用lcm的调用gcd函数