MapReduce编程之实现多表关联
Posted ljbguanli
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了MapReduce编程之实现多表关联相关的知识,希望对你有一定的参考价值。
多表关联和单表关联类似。它也是通过对原始数据进行一定的处理。从当中挖掘出关心的信息。例如以下
输入的是两个文件,一个代表工厂表,包括工厂名列和地址编号列;还有一个代表地址表,包括地址名列和地址编号列。
要求从输入数据中找出工厂名和地址名的相应关系。输出工厂名-地址名表
样本例如以下:
factory:
<span style="font-size:14px;">factoryname addressed Beijing Red Star 1 Shenzhen Thunder 3 Guangzhou Honda 2 Beijing Rising 1 Guangzhou Development Bank 2 Tencent 3 Back of Beijing 1 </span>
address:
<span style="font-size:14px;">addressID addressname 1 Beijing 2 Guangzhou 3 Shenzhen 4 Xian </span>
结果:
<span style="font-size:14px;">factoryname addressname Beijing Red Star Beijing Beijing Rising Beijing Bank of Beijing Beijing Guangzhou Honda Guangzhou Guangzhou Development Bank Guangzhou Shenzhen Thunder Shenzhen Tencent Shenzhen </span>
代码例如以下:
<span style="font-size:14px;">import java.io.IOException; import java.util.*; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class MTjoin { public static int time = 0; /* * 在map中先区分输入行属于左表还是右表,然后对两列值进行切割, * 保存连接列在key值,剩余列和左右表标志在value中,最后输出 */ public static class Map extends Mapper<Object, Text, Text, Text> { // 实现map函数</span>
<span style="font-size:14px;"> public void map(Object key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString();// 每行文件 String relationtype = new String();// 左右表标识 // 输入文件首行,不处理 if (line.contains("factoryname") == true || line.contains("addressed") == true) { return; } // 输入的一行预处理文本 StringTokenizer itr = new StringTokenizer(line); String mapkey = new String(); String mapvalue = new String(); int i = 0; while (itr.hasMoreTokens()) { // 先读取一个单词 String token = itr.nextToken(); // 推断该地址ID就把存到"values[0]" if (token.charAt(0) >= '0' && token.charAt(0) <= '9') { mapkey = token; if (i > 0) { relationtype = "1"; } else { relationtype = "2"; } continue; } // 存工厂名 mapvalue += token + " "; i++; } // 输出左右表 context.write(new Text(mapkey), new Text(relationtype + "+"+ mapvalue)); } } /* * reduce解析map输出。将value中数据依照左右表分别保存, * 然后求出笛卡尔积。并输出。*/ public static class Reduce extends Reducer<Text, Text, Text, Text> { // 实现reduce函数 public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException { // 输出表头 if (0 == time) { context.write(new Text("factoryname"), new Text("addressname")); time++; } int factorynum = 0; String[] factory = new String[10]; int addressnum = 0; String[] address = new String[10]; Iterator ite = values.iterator(); while (ite.hasNext()) { String record = ite.next().toString(); int len = record.length(); int i = 2; if (0 == len) { continue; } // 取得左右表标识 char relationtype = record.charAt(0); // 左表 if ('1' == relationtype) { factory[factorynum] = record.substring(i); factorynum++; } // 右表 if ('2' == relationtype) { address[addressnum] = record.substring(i); addressnum++; } } // 求笛卡尔积 if (0 != factorynum && 0 != addressnum) { for (int m = 0; m < factorynum; m++) { for (int n = 0; n < addressnum; n++) { // 输出结果 context.write(new Text(factory[m]), new Text(address[n])); } } } } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); // 这句话非常关键 // conf.set("mapred.job.tracker", "192.168.1.2:9001"); //可使用args // String[] ioArgs = new String[] { "MTjoin_in", "MTjoin_out" }; String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs(); if (otherArgs.length != 2) { System.err.println("Usage: Multiple Table Join <in> <out>"); System.exit(2); } Job job = new Job(conf, "Multiple Table Join"); job.setJarByClass(MTjoin.class); // 设置Map和Reduce处理类 job.setMapperClass(Map.class); job.setReducerClass(Reduce.class); // 设置输出类型 job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); // 设置输入和输出文件夹 FileInputFormat.addInputPath(job, new Path(otherArgs[0])); FileOutputFormat.setOutputPath(job, new Path(otherArgs[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } } </span>
<span style="font-size:14px;">javac -classpath hadoop-core-1.1.2.jar:/opt/hadoop-1.1.2/lib/commons-cli-1.2.jar -d firstProject firstProject/MTJoin.java </span>
<span style="font-size:14px;">jar -cvf MTJoin.jar -C firstProject/ . </span>
<span style="font-size:14px;"> </span>
删除已经存在的output
<span style="font-size:14px;">hadoop fs -rmr output </span>
<span style="font-size:14px;">hadoop fs -mkdir input </span>
<span style="font-size:14px;">hadoop fs -put factory input </span>
<span style="font-size:14px;"> hadoop fs -put address input </span>
执行
<span style="font-size:14px;">hadoop jar MTJoin.jar MTJoin input output </span>
查看结果
<span style="font-size:14px;"> hadoop fs -cat output/part-r-00000</span>
以上是关于MapReduce编程之实现多表关联的主要内容,如果未能解决你的问题,请参考以下文章
Hadoop MapReduce例子-新版API多表连接Join之模仿订单配货
SpringBoot12 QueryDSL02之利用QueryDSL实现多表关联查询