Hdu 4010-Query on The Trees LCT,动态树
Posted 微弱的世界
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Hdu 4010-Query on The Trees LCT,动态树相关的知识,希望对你有一定的参考价值。
Query on The Trees
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others)
Total Submission(s): 4091 Accepted Submission(s): 1774
Problem Description
We have met so many problems on the tree, so today we will have a query problem on a set of trees.
There are N nodes, each node will have a unique weight Wi. We will have four kinds of operations on it and you should solve them efficiently. Wish you have fun!
There are N nodes, each node will have a unique weight Wi. We will have four kinds of operations on it and you should solve them efficiently. Wish you have fun!
Input
There are multiple test cases in our dataset.
For each case, the first line contains only one integer N.(1 ≤ N ≤ 300000) The next N‐1 lines each contains two integers x, y which means there is an edge between them. It also means we will give you one tree initially.
The next line will contains N integers which means the weight Wi of each node. (0 ≤ Wi ≤ 3000)
The next line will contains an integer Q. (1 ≤ Q ≤ 300000) The next Q lines will start with an integer 1, 2, 3 or 4 means the kind of this operation.
1. Given two integer x, y, you should make a new edge between these two node x and y. So after this operation, two trees will be connected to a new one.
2. Given two integer x, y, you should find the tree in the tree set who contain node x, and you should make the node x be the root of this tree, and then you should cut the edge between node y and its parent. So after this operation, a tree will be separate into two parts.
3. Given three integer w, x, y, for the x, y and all nodes between the path from x to y, you should increase their weight by w.
4. Given two integer x, y, you should check the node weights on the path between x and y, and you should output the maximum weight on it.
For each case, the first line contains only one integer N.(1 ≤ N ≤ 300000) The next N‐1 lines each contains two integers x, y which means there is an edge between them. It also means we will give you one tree initially.
The next line will contains N integers which means the weight Wi of each node. (0 ≤ Wi ≤ 3000)
The next line will contains an integer Q. (1 ≤ Q ≤ 300000) The next Q lines will start with an integer 1, 2, 3 or 4 means the kind of this operation.
1. Given two integer x, y, you should make a new edge between these two node x and y. So after this operation, two trees will be connected to a new one.
2. Given two integer x, y, you should find the tree in the tree set who contain node x, and you should make the node x be the root of this tree, and then you should cut the edge between node y and its parent. So after this operation, a tree will be separate into two parts.
3. Given three integer w, x, y, for the x, y and all nodes between the path from x to y, you should increase their weight by w.
4. Given two integer x, y, you should check the node weights on the path between x and y, and you should output the maximum weight on it.
Output
For each query you should output the correct answer of it. If you find this query is an illegal operation, you should output ‐1.
You should output a blank line after each test case.
You should output a blank line after each test case.
Sample Input
5
1 2
2 4
2 5
1 3
1 2 3 4 5
6
4 2 3
2 1 2
4 2 3
1 3 5
3 2 1 4
4 1 4
Sample Output
3
-1
7
Hint
We define the illegal situation of different operations:
In first operation: if node x and y belong to a same tree, we think it‘s illegal.
In second operation: if x = y or x and y not belong to a same tree, we think it‘s illegal.
In third operation: if x and y not belong to a same tree, we think it‘s illegal.
In fourth operation: if x and y not belong to a same tree, we think it‘s illegal.
Source
Recommend
lcy
题解:
LCT的子树问题。
找到每个点所在的原始树(不是Splay树)的根。
又是子树判断最麻烦。。。
1 #include<bits/stdc++.h> 2 using namespace std; 3 #define MAXN 300010 4 #define INF 1e9 5 struct node 6 { 7 int left,right,val,mx; 8 }tree[MAXN]; 9 struct NODE 10 { 11 int begin,end,next; 12 }edge[MAXN*2]; 13 int father[MAXN],rev[MAXN],tag[MAXN],U[MAXN],V[MAXN],Stack[MAXN],Head[MAXN],cnt; 14 void addedge(int bb,int ee) 15 { 16 edge[++cnt].begin=bb;edge[cnt].end=ee;edge[cnt].next=Head[bb];Head[bb]=cnt; 17 } 18 void addedge1(int bb,int ee) 19 { 20 addedge(bb,ee);addedge(ee,bb); 21 } 22 int read() 23 { 24 int s=0,fh=1;char ch=getchar(); 25 while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)fh=-1;ch=getchar();} 26 while(ch>=‘0‘&&ch<=‘9‘){s=s*10+(ch-‘0‘);ch=getchar();} 27 return s*fh; 28 } 29 int isroot(int x) 30 { 31 return tree[father[x]].left!=x&&tree[father[x]].right!=x; 32 } 33 void pushdown(int x) 34 { 35 int l=tree[x].left,r=tree[x].right; 36 if(rev[x]!=0) 37 { 38 rev[x]^=1;rev[l]^=1;rev[r]^=1; 39 swap(tree[x].left,tree[x].right); 40 } 41 if(tag[x]!=0) 42 { 43 /*tag[l]+=tag[x];tag[r]+=tag[x]; 44 tree[l].val+=tag[x];tree[r].val+=tag[x]; 45 tree[l].mx+=tag[x];tree[r].mx+=tag[x];*/ 46 if(l!=0){tag[l]+=tag[x];tree[l].val+=tag[x];tree[l].mx+=tag[x];} 47 if(r!=0){tag[r]+=tag[x];tree[r].val+=tag[x];tree[r].mx+=tag[x];} 48 tag[x]=0; 49 } 50 } 51 void Pushup(int x) 52 { 53 int l=tree[x].left,r=tree[x].right; 54 tree[x].mx=max(max(tree[l].mx,tree[r].mx),tree[x].val); 55 } 56 void rotate(int x) 57 { 58 int y=father[x],z=father[y]; 59 if(!isroot(y)) 60 { 61 if(tree[z].left==y)tree[z].left=x; 62 else tree[z].right=x; 63 } 64 if(tree[y].left==x) 65 { 66 father[x]=z;father[y]=x;tree[y].left=tree[x].right;tree[x].right=y;father[tree[y].left]=y; 67 } 68 else 69 { 70 father[x]=z;father[y]=x;tree[y].right=tree[x].left;tree[x].left=y;father[tree[y].right]=y; 71 } 72 Pushup(y);Pushup(x); 73 } 74 void splay(int x) 75 { 76 int top=0,i,y,z;Stack[++top]=x; 77 for(i=x;!isroot(i);i=father[i])Stack[++top]=father[i]; 78 for(i=top;i>=1;i--)pushdown(Stack[i]); 79 while(!isroot(x)) 80 { 81 y=father[x];z=father[y]; 82 if(!isroot(y)) 83 { 84 if((tree[y].left==x)^(tree[z].left==y))rotate(x); 85 else rotate(y); 86 } 87 rotate(x); 88 } 89 } 90 void access(int x) 91 { 92 int last=0; 93 while(x!=0) 94 { 95 splay(x); 96 tree[x].right=last;Pushup(x); 97 last=x;x=father[x]; 98 } 99 } 100 void makeroot(int x) 101 { 102 access(x);splay(x);rev[x]^=1; 103 } 104 void link(int u,int v) 105 { 106 /*access(u);*/makeroot(u);father[u]=v;//splay(u); 107 } 108 void cut(int u,int v) 109 { 110 /*access(u);*/makeroot(u);access(v);splay(v);/*father[u]=tree[v].left=0;*/father[tree[v].left]=0;tree[v].left=0;Pushup(v); 111 } 112 int findroot(int x) 113 { 114 access(x);splay(x); 115 while(tree[x].left!=0)x=tree[x].left; 116 return x; 117 } 118 int main() 119 { 120 int n,i,w,x,y,fh,Q,top=0,u,j,v; 121 while(scanf("%d",&n)!=EOF) 122 { 123 top=0; 124 for(i=0;i<=n;i++)tree[i].val=tree[i].mx=tree[i].left=tree[i].right=rev[i]=tag[i]=father[i]=0; 125 tree[0].mx=-INF; 126 memset(Head,-1,sizeof(Head));cnt=1; 127 for(i=1;i<n;i++) 128 { 129 U[i]=read();V[i]=read(); 130 addedge1(U[i],V[i]); 131 } 132 Stack[++top]=1; 133 for(i=1;i<=top;i++) 134 { 135 u=Stack[i]; 136 for(j=Head[u];j!=-1;j=edge[j].next) 137 { 138 v=edge[j].end; 139 if(v!=father[u]) 140 { 141 father[v]=u; 142 Stack[++top]=v; 143 } 144 } 145 } 146 for(i=1;i<=n;i++)tree[i].mx=tree[i].val=read(); 147 //for(i=1;i<n;i++)link(U[i],V[i]); 148 Q=read(); 149 for(i=1;i<=Q;i++) 150 { 151 fh=read(); 152 if(fh==1) 153 { 154 x=read();y=read(); 155 if(findroot(x)!=findroot(y))link(x,y); 156 else {printf("-1\n");continue;} 157 } 158 else if(fh==2) 159 { 160 x=read();y=read(); 161 if(findroot(x)==findroot(y)&&x!=y) 162 { 163 /*makeroot(x);*/cut(x,y); 164 //access(y);access(father[y]);splay(father[y]);father[y]=tree[father[y]].left=0; 165 } 166 else {printf("-1\n");continue;} 167 } 168 else if(fh==3) 169 { 170 w=read();x=read();y=read(); 171 if(findroot(x)==findroot(y)) 172 { 173 makeroot(x);access(y);splay(y); 174 tag[y]+=w;tree[y].mx+=w;tree[y].val+=w; 175 } 176 else {printf("-1\n");continue;} 177 } 178 else 179 { 180 x=read();y=read(); 181 makeroot(x);access(y);splay(y); 182 if(findroot(x)!=findroot(y)){printf("-1\n");continue;} 183 printf("%d\n",tree[y].mx); 184 } 185 } 186 printf("\n"); 187 } 188 return 0; 189 }
以上是关于Hdu 4010-Query on The Trees LCT,动态树的主要内容,如果未能解决你的问题,请参考以下文章
HDU 4010 Query on The Trees(动态树)
HDU 4010 Query on The Trees (动态树)(Link-Cut-Tree)
HDOJ 4010 Query on The Trees LCT