Model Evaluation
Posted 付小同
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Model Evaluation相关的知识,希望对你有一定的参考价值。
1. Confusion Matrix
Fact\Predict | Class A | Class B |
Class A | True Positive | False Negative |
Class B | False Positive | True Nagative |
A confusion table for Class A
Positive/ Negative: if target class is A, then the predict A is Positve, Others are negative.
True (P/N): if Predict = Fact, then it‘s True.
2. Measures based on Confusion Matrix
a. Accuracy = TN+TP/ALL
comments: not good measure when data are unbalanced.
b. True Positive Rate/ recall/ sensitivity = TP / TP + FN
comments: use it when Positive results are important
c. True Negative Rate = TN / TN + FP
R for Confusion Matrix:
library(SDMTools)
confusion.matrix(svmmodel.truth,svmmodel.class)
3. ROC curve (bio-classification)
y: sensitivity
x: specificity
The bigger the Area of ROC is, the more accurate the model is.
以上是关于Model Evaluation的主要内容,如果未能解决你的问题,请参考以下文章
MVC 3 Razor @model 与使用 @Model.pName 与 @Html.LabelFor(model => model.pName) 打印属性的模型
新 Backbone.Model() 与 Backbone.Model.extend()
show(Model $model) 在 Laravel 7 中不起作用
Mongoose 聚合:基于 Model.associated_Model.associated_Model.field 过滤返回错误结果