Linux线程及同步
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Linux线程及同步相关的知识,希望对你有一定的参考价值。
参考技术A linux多线程1.线程概述
线程是一个进程内的基本调度单位,也可以称为轻量级进程。线程是在共享内存空间中并发的多道执行路径,它们共享一个进程的资源,如文件描述和信号处理。因此,大大减少了上下文切换的开销。一个进程可以有多个线程,也就
是有多个线程控制表及堆栈寄存器,但却共享一个用户地址空间。
2.线程实现
线程创建pthread_create()
所需头文件#include
<pthread.h>
函数原型int
pthread_create
((pthread_t
*thread,
pthread_attr_t
*attr,
thread:线程标识符
attr:线程属性设置
start_routine:线程函数的起始地址
arg:传递给start_routine的参数
函数返回值
成功:0
出错:-1
线程退出pthread_exit();
所需头文件#include
<pthread.h>
函数原型void
pthread_exit(void
*retval)
函数传入值retval:pthread_exit()调用者线程的返回值,可由其他函数如pthread_join
来检索获取
等待线程退出并释放资源pthread_join()
所需头文件#include
<pthread.h>
函数原型int
pthread_join
((pthread_t
th,
void
**thread_return))
函数传入值
th:等待线程的标识符
thread_return:用户定义的指针,用来存储被等待线程的返回值(不为NULL时)
函数返回值
成功:0
出错:-1
代码举例
1.
#include<pthread.h>
2.
#include<stdio.h>
3.
#include<errno.h>
4.
5.
/*线程1*/
6.
void
thread1()
7.
8.
int
i=0;
9.
10.
while(1)
11.
12.
printf(thread1:%d/n,i);
13.
if(i>3)
14.
pthread_exit(0);
15.
i++;
16.
sleep(1);
17.
18.
19.
20.
/*线程2*/
21.
void
thread2()
22.
23.
int
i=0;
24.
25.
while(1)
26.
27.
printf(thread2:%d/n,i);
28.
if(i>5)
29.
pthread_exit(0);
30.
i++;
31.
sleep(1);
32.
33.
34.
35.
int
main()
36.
37.
pthread_t
t1,t2;
38.
39.
/*创建线程*/
40.
pthread_create(&t1,NULL,(void
*)thread1,NULL);
41.
pthread_create(&t2,NULL,(void
*)thread2,NULL);
42.
/*等待线程退出*/
43.
pthread_join(t1,NULL);
44.
pthread_join(t2,NULL);
45.
return
0;
46.
3同步与互斥
<1>互斥锁
互斥锁的操作主要包括以下几个步骤。
•
互斥锁初始化:pthread_mutex_init
•
互斥锁上锁:pthread_mutex_lock
•
互斥锁判断上锁:pthread_mutex_trylock
•
互斥锁接锁:pthread_mutex_unlock
•
消除互斥锁:pthread_mutex_destroy
1.
#include<pthread.h>
2.
#include<stdio.h>
3.
#include<errno.h>
4.
5.
int
i=0;/*共享变量*/
6.
pthread_mutex_t
mutex=PTHREAD_MUTEX_INITIALIZER;/*互斥锁*/
7.
8.
void
thread1()
9.
10.
int
ret;
11.
while(1)
12.
13.
14.
15.
ret=pthread_mutex_trylock(&mutex);/*判断上锁*/
16.
17.
if(ret!=EBUSY)
18.
19.
pthread_mutex_lock(&mutex);/*上锁*/
20.
printf(This
is
thread1:%d/n,i);
21.
i++;
22.
pthread_mutex_unlock(&mutex);/*解锁*/
23.
24.
sleep(1);
25.
26.
27.
28.
void
thread2()
29.
int
ret;
30.
while(1)
31.
32.
33.
ret=pthread_mutex_trylock(&mutex);
34.
if(ret!=EBUSY)
35.
36.
pthread_mutex_lock(&mutex);
37.
printf(This
is
thread2:%d/n,i);
38.
i++;
39.
pthread_mutex_unlock(&mutex);
40.
41.
sleep(1);
42.
43.
44.
int
main()
45.
46.
pthread_t
t1,t2;
47.
pthread_mutex_init(&mutex,NULL);
48.
pthread_create(&t1,NULL,(void
*)thread1,NULL);
49.
pthread_create(&t2,NULL,(void
*)thread2,NULL);
50.
51.
pthread_join(t1,NULL);
52.
pthread_join(t2,NULL);
53.
54.
pthread_mutex_destroy(&mutex);
55.
return
0;
56.
<2>信号量
未进行同步处理的两个线程
1.
#include<pthread.h>
2.
#include<stdio.h>
3.
#include<errno.h>
4.
5.
int
i=0;
6.
void
thread1()
7.
8.
9.
while(1)
10.
11.
printf(This
is
thread1:%d/n,i);
12.
i++;
13.
sleep(1);
14.
15.
16.
17.
18.
void
thread2()
19.
20.
21.
while(1)
22.
23.
printf(This
is
thread2:%d/n,i);
24.
i++;
25.
sleep(1);
26.
27.
28.
29.
int
main()
30.
31.
pthread_t
t1,t2;
32.
33.
pthread_create(&t1,NULL,(void
*)thread1,NULL);
34.
pthread_create(&t2,NULL,(void
*)thread2,NULL);
Linux多线程实现及线程同步函数分析
在Linux中,多线程的本质仍是进程,它与进程的区别:
进程:独立地址空间,拥有PCB
线程:也有PCB,但没有独立的地址空间(共享)
线程的特点:
1,线程是轻量级进程,有PCB,创建线程使用的底层函数和进程一样,都是clone
2,从内核看进程和线程是一样的,都有各自不同的PCB
3,进程可以蜕变成线程
4,在LINUX中,线程是最小的执行单位,进程是最小的分配资源单位
查看指定线程的LWP号命令:
ps -Lf pid
线程优点:
提高程序并发性
开销小
数据通信,共享数据方便
线程缺点:
库函数 ,不稳定
调试,编写困难,GDB
对信号支持不好
线程属性,可以在一开始就设置好分离态,具体在下面的代码有说明!
线程同步,主要有互斥锁mutex,读写锁,条件变量,信号量
线程创建函数原型:
int pthread_create( pthread_t *thread, // 线程ID const pthread_attr_t *attr, // 线程属性 void *(*start_routine) (void *), // 线程主函数 void *arg // 主函数参数 );
粘上基本创建线程模型:
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <unistd.h> #include <pthread.h> //函数回调 void *mythread(void *args) { printf("child thread id==[%ld]\n", pthread_self()); } int main() { pthread_t thread; //创建一个线程 int ret = pthread_create(&thread, NULL, mythread, NULL); if(ret!=0) { printf("pthread_create error, [%s]\n", strerror(ret)); return -1; } printf("main thread id==[%ld]\n", pthread_self()); sleep(1); }
线程属性,在创建时分离代码:
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <unistd.h> #include <pthread.h> void *mythread(void *args) { printf("child thread id==[%ld]\n", pthread_self()); } int main() { pthread_t thread; //线程属性 pthread_attr_t attr; //线程属性初始化 pthread_attr_init(&attr); //设置线程到分离属性 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED); //创建一个线程 int ret = pthread_create(&thread, &attr, mythread, NULL); if(ret!=0) { printf("pthread_create error, [%s]\n", strerror(ret)); return -1; } printf("main thread id==[%ld]\n", pthread_self()); sleep(1); ret = pthread_join(thread, NULL); if(ret!=0) { printf("pthread_join error, [%s]\n", strerror(ret)); } //释放线程属性 pthread_attr_destroy(&attr); return 0; }
互斥锁实现代码:
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <unistd.h> #include <pthread.h> #include <time.h> //定义一把锁 pthread_mutex_t mutex; void *mythread1(void *args) { while(1) { //加锁 pthread_mutex_lock(&mutex); pthread_mutex_lock(&mutex); printf("hello "); sleep(rand()%3); printf("world\n"); //解锁 pthread_mutex_unlock(&mutex); sleep(rand()%3); } pthread_exit(NULL); } void *mythread2(void *args) { while(1) { //加锁 pthread_mutex_lock(&mutex); printf("HELLO "); sleep(rand()%3); printf("WORLD\n"); //解锁 pthread_mutex_unlock(&mutex); sleep(rand()%3); } pthread_exit(NULL); } int main() { int ret; pthread_t thread1; pthread_t thread2; //随机数种子 srand(time(NULL)); //互斥锁初始化 pthread_mutex_init(&mutex, NULL); ret = pthread_create(&thread1, NULL, mythread1, NULL); if(ret!=0) { printf("pthread_create error, [%s]\n", strerror(ret)); return -1; } ret = pthread_create(&thread2, NULL, mythread2, NULL); if(ret!=0) { printf("pthread_create error, [%s]\n", strerror(ret)); return -1; } //等待线程结束 pthread_join(thread1, NULL); pthread_join(thread2, NULL); //释放互斥锁 pthread_mutex_destroy(&mutex); return 0; }
读写锁代码:
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <unistd.h> #include <pthread.h> int number = 0; //定义一把读写锁 pthread_rwlock_t rwlock; void *fun_write(void *args) { int i = *(int *)args; int n; while(1) { //加写锁 pthread_rwlock_wrlock(&rwlock); n = number; n++; //sleep(rand()%3); number = n; printf("W->[%d]:[%d]\n", i, number); //解写锁 pthread_rwlock_unlock(&rwlock); sleep(rand()%3); } pthread_exit(NULL); } void *fun_read(void *args) { int i = *(int *)args; while(1) { //加读锁 pthread_rwlock_rdlock(&rwlock); printf("R->[%d]:[%d]\n", i, number); //解锁 pthread_rwlock_unlock(&rwlock); sleep(rand()%3); } pthread_exit(NULL); } int main() { int i; int ret; int n = 8; int arr[8]; pthread_t thread[8]; //读写锁初始化 pthread_rwlock_init(&rwlock, NULL); //创建3个写线程 for(i=0; i<3; i++) { arr[i] = i; ret = pthread_create(&thread[i], NULL, fun_write, (void *)&arr[i]); if(ret!=0) { printf("pthread_create error, [%s]\n", strerror(ret)); return -1; } } //创建5个读线程 for(i=3; i<n; i++) { arr[i] = i; ret = pthread_create(&thread[i], NULL, fun_read, (void *)&arr[i]); if(ret!=0) { printf("pthread_create error, [%s]\n", strerror(ret)); return -1; } } for(i=0; i<n; i++) { //回收子线程 pthread_join(thread[i], NULL); } //释放读写锁资源 pthread_rwlock_destroy(&rwlock); return 0; }
cond条件变量代码:
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <unistd.h> #include <pthread.h> typedef struct node { int data; struct node *next; }NODE; //链表头节点指针 NODE *head = NULL; //互斥锁 pthread_mutex_t mutex; //条件变量 pthread_cond_t cond; //生产者线程处理函数 void *producer(void *args) { NODE *pNode = NULL; while(1) { pNode = (NODE *)malloc(sizeof(NODE)); if(pNode==NULL) { perror("malloc error\n"); exit(1); } pNode->data = rand()%1000; //lock共享资源 pthread_mutex_lock(&mutex); pNode->next = head; head=pNode; printf("P:[%d]\n", head->data); //对共享资源解锁 pthread_mutex_unlock(&mutex); //使用条件变量解除对线程到阻塞 pthread_cond_signal(&cond); sleep(rand()%3); } } //消费者线程处理函数 void *consumer(void *args) { NODE *pNode = NULL; while(1) { //lock共享资源 pthread_mutex_lock(&mutex); if(head==NULL) { //条件不满足阻塞等待head不为空 pthread_cond_wait(&cond, &mutex); } printf("C:[%d]\n", head->data); pNode = head; head = head->next; //对共享资源解锁 pthread_mutex_unlock(&mutex); free(pNode); pNode = NULL; sleep(rand()%3); } } int main(int argc, char *argv[]) { int ret; pthread_t thread1; pthread_t thread2; pthread_mutex_t mutex; pthread_cond_t cond; //初始化互斥锁 pthread_mutex_init(&mutex, NULL); //初始化条件变量 pthread_cond_init(&cond, NULL); //创建生产者线程 ret = pthread_create(&thread1, NULL, producer, NULL); if(ret!=0) { printf("pthread_create error, [%s]\n", strerror(ret)); return -1; } //创建消费者线程 ret = pthread_create(&thread2, NULL, consumer, NULL); if(ret!=0) { printf("pthread_create error, [%s]\n", strerror(ret)); return -1; } //主线程回收子线程 pthread_join(thread1, NULL); pthread_join(thread2, NULL); //释放锁资源 pthread_mutex_destroy(&mutex); //释放条件变量资源 pthread_cond_destroy(&cond); return 0; }
信号量,经典消费者生产者模型:
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/types.h> #include <unistd.h> #include <pthread.h> #include <semaphore.h> typedef struct node { int data; struct node *next; }NODE; //链表头节点指针 NODE *head = NULL; sem_t sem_consumer; sem_t sem_producer; //生产者线程处理函数 void *producer(void *args) { NODE *pNode = NULL; while(1) { pNode = (NODE *)malloc(sizeof(NODE)); if(pNode==NULL) { perror("malloc error\n"); exit(1); } pNode->data = rand()%1000; //sem_producer--, 若为0则阻塞 sem_wait(&sem_producer); pNode->next = head; head=pNode; printf("P:[%d]\n", head->data); //sem_consumer++ sem_post(&sem_consumer); sleep(rand()%3); } } //消费者线程处理函数 void *consumer(void *args) { NODE *pNode = NULL; while(1) { //sem_consumer--, 若为0则阻塞 sem_wait(&sem_consumer); printf("C:[%d]\n", head->data); pNode = head; head = head->next; //sem_producer++ sem_post(&sem_producer); free(pNode); pNode = NULL; sleep(rand()%3); } } int main(int argc, char *argv[]) { int ret; pthread_t thread1; pthread_t thread2; //信号量初始化 sem_init(&sem_producer, 0, 5); sem_init(&sem_consumer, 0, 0); //创建生产者线程 ret = pthread_create(&thread1, NULL, producer, NULL); if(ret!=0) { printf("pthread_create error, [%s]\n", strerror(ret)); return -1; } //创建消费者线程 ret = pthread_create(&thread2, NULL, consumer, NULL); if(ret!=0) { printf("pthread_create error, [%s]\n", strerror(ret)); return -1; } //主线程回收子线程 pthread_join(thread1, NULL); pthread_join(thread2, NULL); //释放信号量资源 sem_destroy(&sem_producer); sem_destroy(&sem_consumer); return 0; }
以上是关于Linux线程及同步的主要内容,如果未能解决你的问题,请参考以下文章