[PY3]——heap模块 和 堆排序

Posted Jelly_lyj

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[PY3]——heap模块 和 堆排序相关的知识,希望对你有一定的参考价值。

heapify( )

heapify()函数用于将一个序列转化为初始化堆

nums=[16,7,3,20,17,8,-1]
print(\'nums:\',nums)
show_tree(nums)

nums: [16, 7, 3, 20, 17, 8, -1]

                 16                 
        7                 3         
    20       17       8        -1   
------------------------------------

heapq.heapify(nums)
print(\'nums:\',nums)
show_tree(nums)

nums: [-1, 7, 3, 20, 17, 8, 16]

                 -1                 
        7                 3         
    20       17       8        16   
------------------------------------

 

heappush( )

heappush()是实现将元素插入到堆的操作
heappush()操作前一定要先将序列初始化成堆!heappush是对于"堆"的操作!不然是没有意义

nums=[16,7,3,20,17,8,-1]
print(nums)
show_tree(nums)

       [16, 7, 3, 20, 17, 8, -1]

                   16                 
          7                 3         
      20       17       8        -1   
  ------------------------------------

heapq.heapify(nums)
print(\'初始化成堆:\',nums)  
show_tree(nums)

    初始化成堆: [-1, 7, 3, 20, 17, 8, 16]

                     -1                 
            7                 3         
        20       17       8        16   
    ------------------------------------
for i in random.sample(range(1,8),2):
    print("本次push:",i)
    heapq.heappush(nums,i)
    print(nums)
    show_tree(nums)
    
    本次push: 5
    [-1, 5, 3, 7, 17, 8, 16, 20]

                     -1                 
            5                 3         
        7        17       8        16   
     20 
    ------------------------------------

    本次push: 7
    [-1, 5, 3, 7, 17, 8, 16, 20, 7]

                     -1                 
            5                 3         
        7        17       8        16   
     20  7  
    ------------------------------------

 

heappop( )

heappop()是实现将元素删除出堆的操作
同样的操作前一定要先将序列初始化成堆,否则也没什么意义

nums=[16,7,3,20,17,8,-1]
print(nums)
show_tree(nums)

          [16, 7, 3, 20, 17, 8, -1]

                       16                 
              7                 3         
          20       17       8        -1   
      ------------------------------------

heapq.heapify(nums)
print(\'初始化成堆:\',nums)
show_tree(nums)

        初始化成堆: [-1, 7, 3, 20, 17, 8, 16]

                         -1                 
                7                 3         
            20       17       8        16   
        ------------------------------------
for i in range(0,2):
    print("本次pop:",heapq.heappop(nums))
    print(nums)
    show_tree(nums)

        本次pop: -1
        [3, 7, 8, 20, 17, 16]

                         3                  
                7                 8         
            20       17       16   
        ------------------------------------

        本次pop: 3
        [7, 16, 8, 20, 17]

                         7                  
                16                8         
            20       17   
        ------------------------------------

 

nlargest( )/nsmallest( )

sorted(iterable, key=key, reverse=True)[:n]

  • nlargest(n,iterable) 求序列iterable中的TopN | nsmallest(n,iterable) 求序列iterable中的BtmN
import heapq
nums=[16,7,3,20,17,8,-1]
print(heapq.nlargest(3,nums))
print(heapq.nsmallest(3,nums))

[20, 17, 16]
[-1, 3, 7]
  • nlargest(n, iterable, key=lambda) | nsmallest(n, iterable, key=lambda) key接受关键字参数,用于更复杂的数据结构中
def print_price(dirt):
    for i in dirt:
        for x,y in i.items():
            if x==\'price\':
                print(x,y)

portfolio = [
    {\'name\': \'IBM\', \'shares\': 100, \'price\': 91.1},
    {\'name\': \'AAPL\', \'shares\': 50, \'price\': 543.22},
    {\'name\': \'FB\', \'shares\': 200, \'price\': 21.09},
    {\'name\': \'HPQ\', \'shares\': 35, \'price\': 31.75},
    {\'name\': \'YHOO\', \'shares\': 45, \'price\': 16.35},
    {\'name\': \'ACME\', \'shares\': 75, \'price\': 115.65}
]

cheap=heapq.nsmallest(3,portfolio,key=lambda x:x[\'price\'])
expensive=heapq.nlargest(3,portfolio,key=lambda y:y[\'price\'])
print_price(cheap)
print_price(expensive)

price 16.35
price 21.09
price 31.75

price 543.22
price 115.65
price 91.1

 

关于heap和heap sort

对于上面的nums=[16,7,3,20,17,8,-1]序列,图解了:

构造堆的操作(点击查看)

push堆的操作(点击查看)

pop堆的操作(点击查看)

 

参考文章

详解Python中heapq模块的用法(包括show_tree())

详解堆排序

浅谈算法和数据结构: 五 优先级队列与堆排序

 

以上是关于[PY3]——heap模块 和 堆排序的主要内容,如果未能解决你的问题,请参考以下文章

PAT甲题题解1098. Insertion or Heap Sort (25)-(插入排序和堆排序)

堆排序(heap sort)

heapq模块

排序算法---堆排序

1098 Insertion or Heap Sort (25分)(堆排序和插入排序)

1098 Insertion or Heap Sort