HDU 5100 Chessboard 用 k × 1 的矩形覆盖 n × n 的正方形棋盘
Posted gavanwanggw
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU 5100 Chessboard 用 k × 1 的矩形覆盖 n × n 的正方形棋盘相关的知识,希望对你有一定的参考价值。
php?
pid=5100">点击打开链接
Chessboard
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 335 Accepted Submission(s): 168
Problem Description
Consider the problem of tiling an n×n chessboard by polyomino pieces that are k×1 in size; Every one of the k pieces of each polyomino tile must align exactly with one of the chessboard squares. Your task is to figure out the maximum number of chessboard squares
tiled.
Input
There are multiple test cases in the input file.
First line contain the number of cases T (T≤10000 ).
In the next T lines contain T cases , Each case has two integers n and k. (1≤n,k≤100 )
First line contain the number of cases T (
In the next T lines contain T cases , Each case has two integers n and k. (
Output
Print the maximum number of chessboard squares tiled.
Sample Input
2 6 3 5 3
Sample Output
36 24
Source
用 k × 1 的小矩形覆盖一个 n × n 的正方形棋盘,问正方形棋盘最多能被覆盖多少。
规律就是:假设n<k。肯定不行。
定义mod=n%k;
假设(mod<=k/2),结果为:n*n-mod*mod;
否则结果为:n*n-(k-mod)*(k-mod);
//0MS 228K #include<stdio.h> int main() { int t,n,k; scanf("%d",&t); while(t--) { scanf("%d%d",&n,&k); if(n<k){printf("0\n");continue;} int mod=n%k; if(mod<=k/2)printf("%d\n",n*n-mod*mod); else printf("%d\n",n*n-(k-mod)*(k-mod)); } return 0; }
以上是关于HDU 5100 Chessboard 用 k × 1 的矩形覆盖 n × n 的正方形棋盘的主要内容,如果未能解决你的问题,请参考以下文章
HDU-6532 Chessboard 2019广东省省赛B题(费用流)
POJ 3344 & HDU 2414 Chessboard Dance(模拟)
HDU - 6122 Color the chessboard
688. Knight Probability in Chessboard