拉格朗日乘子

Posted 米老虎M

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了拉格朗日乘子相关的知识,希望对你有一定的参考价值。

目标函数:最小化$f(x,y,z)=x^2+y^2+z^2$

约束:

$g_1(x,y,z)=x+y-2=0$

$g_2(x,y,z)=x+z-2=0$

 

目标函数f在三维空间中的等值线是一个个球面。

约束$g_1,g_2$在三维空间中分别是一个平面

仅考虑一个约束:考虑$g_1$上任意一条轨迹线t,它的行进方向必然与$g_1$的法向量(梯度向量)垂直。在$f$的最小值处,t也必定与$f$的法向量垂直

同时考虑两个约束:$g_1$和$g_2$相交为一条直线,这条直线上任意一条轨迹线t(只能是这条直线),它的行进方向必然与$g_1$和$g_2$的法向量(梯度向量)垂直。在$f$的最小值处,t也必定与$f$的法向量垂直。因此$f$的法向量必然在$g_1$和$g_2$法向量组成的平面上。

 

以上是关于拉格朗日乘子的主要内容,如果未能解决你的问题,请参考以下文章

拉格朗日乘子法及其对偶问题和KKT条件

拉格朗日乘子法

拉格朗日乘子法

拉格朗日乘子法

深入理解拉格朗日乘子法(Lagrange Multiplier) 和KKT条件

机器学习笔记——拉格朗日乘子法和KKT条件