HDU 1015 Safecracker(第一次用了搜索去遍历超时,第二次用for循环能够了,思路一样的)

Posted lxjshuju

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU 1015 Safecracker(第一次用了搜索去遍历超时,第二次用for循环能够了,思路一样的)相关的知识,希望对你有一定的参考价值。

Safecracker

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 3   Accepted Submission(s) : 1
Problem Description
=== Op tech briefing, 2002/11/02 06:42 CST ===
"The item is locked in a Klein safe behind a painting in the second-floor library. Klein safes are extremely rare; most of them, along with Klein and his factory, were destroyed in World War II. Fortunately old Brumbaugh from research knew Klein‘s secrets and wrote them down before he died. A Klein safe has two distinguishing features: a combination lock that uses letters instead of numbers, and an engraved quotation on the door. A Klein quotation always contains between five and twelve distinct uppercase letters, usually at the beginning of sentences, and mentions one or more numbers. Five of the uppercase letters form the combination that opens the safe. By combining the digits from all the numbers in the appropriate way you get a numeric target. (The details of constructing the target number are classified.) To find the combination you must select five letters v, w, x, y, and z that satisfy the following equation, where each letter is replaced by its ordinal position in the alphabet (A=1, B=2, ..., Z=26). The combination is then vwxyz. If there is more than one solution then the combination is the one that is lexicographically greatest, i.e., the one that would appear last in a dictionary."

v - w^2 + x^3 - y^4 + z^5 = target

"For example, given target 1 and letter set ABCDEFGHIJKL, one possible solution is FIECB, since 6 - 9^2 + 5^3 - 3^4 + 2^5 = 1. There are actually several solutions in this case, and the combination turns out to be LKEBA. Klein thought it was safe to encode the combination within the engraving, because it could take months of effort to try all the possibilities even if you knew the secret. But of course computers didn‘t exist then."

=== Op tech directive, computer division, 2002/11/02 12:30 CST ===

"Develop a program to find Klein combinations in preparation for field deployment. Use standard test methodology as per departmental regulations. Input consists of one or more lines containing a positive integer target less than twelve million, a space, then at least five and at most twelve distinct uppercase letters. The last line will contain a target of zero and the letters END; this signals the end of the input. For each line output the Klein combination, break ties with lexicographic order, or ‘no solution‘ if there is no correct combination. Use the exact format shown below."
 

Sample Input
1 ABCDEFGHIJKL 11700519 ZAYEXIWOVU 3072997 SOUGHT 1234567 THEQUICKFROG 0 END
 

Sample Output
LKEBA YOXUZ GHOST no solution



1.lexicographical order:cap < card < cat < to < too< two < up

2.事实上是个组合问题12*11*10*9*8大约十几万次当然5个循环不超时。用搜索的形式写的时候由于递归和回溯耗时,所以超时

3.代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

int t;
char s[20];
int a[10];
int len;
bool flag;

int cmp(int a,int b)
{
    return a>b;
}

void Find()
{
    for(int i=1; i<=len; i++)
    {
        a[1]=s[i]-‘A‘+1;
        for(int j=1; j<=len; j++)
        {
            if(i==j)
                continue;
            a[2]=s[j]-‘A‘+1;
            for(int k=1; k<=len; k++)
            {
                if(j==k||k==i)
                    continue;
                a[3]=s[k]-‘A‘+1;
                for(int l=1; l<=len; l++)
                {
                    if(l==k||l==j||l==i)
                        continue;
                    a[4]=s[l]-‘A‘+1;
                    for(int m=1; m<=len; m++)
                    {
                        if(m==l||m==k||m==j||m==i)
                            continue;
                        a[5]=s[m]-‘A‘+1;
                        if(a[1]-a[2]*a[2]+a[3]*a[3]*a[3]-a[4]*a[4]*a[4]*a[4]+a[5]*a[5]*a[5]*a[5]*a[5]==t)
                        {
                            flag=1;
                            break;
                        }
                    }
                    if(flag)
                        break;
                }
                if(flag)
                    break;
            }
            if(flag)
                break;
        }
        if(flag)
            break;
    }
}

int main()
{
    while(scanf("%d%s",&t,s+1)==2)
    {
        if(t==0&&strcmp("END",s+1)==0)
        {
            break;
        }
        else
        {
            len=strlen(s+1);
            flag=0;
            sort(s+1,s+1+len,cmp);//保证答案是字典序上最大
            Find();
            if(flag)
                printf("%c%c%c%c%c\n",a[1]+‘A‘-1,a[2]+‘A‘-1,a[3]+‘A‘-1,a[4]+‘A‘-1,a[5]+‘A‘-1);
            else
                printf("no solution\n");
        }
    }
    return 0;
}




以上是关于HDU 1015 Safecracker(第一次用了搜索去遍历超时,第二次用for循环能够了,思路一样的)的主要内容,如果未能解决你的问题,请参考以下文章

HDU-1015 Safecracker(暴力枚举)

hdu 1015 Safecracker

hdu 1015 Safecracker

HDU 1015 Safecracker

HDU 1015 Safecracker数值型DFS

Safecracker-HDU1015