雅可比矩阵(偏导数矩阵)的逆矩阵代表啥含义

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了雅可比矩阵(偏导数矩阵)的逆矩阵代表啥含义相关的知识,希望对你有一定的参考价值。

Jacobi矩阵有逆
即表示原来的变换有逆变换
而这个逆矩阵
也就是逆变换的Jacobi矩阵
参考技术A 雅克比矩阵的逆矩阵没有实质的物理含义,雅克比矩阵的逆矩阵是为了求解单元刚度矩阵而进行的数学变换之一,在等式两侧同乘雅克比矩阵的逆矩阵以后,就可以得到单元刚度矩阵的表达形式了。

雅克比矩阵、海森矩阵

参考技术A 在向量分析中, 雅可比矩阵是一阶偏导数以一定方式排列成的矩阵, 其行列式称为雅可比行列式. 还有, 在代数几何中, 代数曲线的雅可比量表示雅可比簇:伴随该曲线的一个代数群, 曲线可以嵌入其中. 它们全部都以数学家卡尔·雅可比(Carl Jacob, 1804年10月4日-1851年2月18日)命名;英文雅可比量”Jacobian”可以发音为[ja ˈko bi ən]或者[ʤə ˈko bi ən].

雅可比矩阵的重要性在于它体现了一个可微方程与给出点的最优线性逼近. 因此, 雅可比矩阵类似于多元函数的导数.

假设F: Rn→Rm是一个从欧式n维空间转换到欧式m维空间的函数. 这个函数由m个实函数组成: y1(x1,…,xn), …, ym(x1,…,xn). 这些函数的偏导数(如果存在)可以组成一个m行n列的矩阵, 这就是所谓的雅可比矩阵:

此矩阵用符号表示为:

如果pp是RnRn中的一点, FF在pp点可微分, 那么在这一点的导数由JF(p)JF(p)给出(这是求该点导数最简便的方法). 在此情况下, 由F(p)F(p)描述的线性算子即接近点pp的FF的最优线性逼近, xx逼近于pp:
F(x)≈F(p)+JF(p)⋅(x–p)

如果m = n, 那么FF是从n维空间到n维空间的函数, 且它的雅可比矩阵是一个方块矩阵. 于是我们可以取它的行列式, 称为雅可比行列式.

在某个给定点的雅可比行列式提供了 在接近该点时的表现的重要信息. 例如, 如果连续可微函数FF在pp点的雅可比行列式不是零, 那么它在该点附近具有反函数. 这称为反函数定理. 更进一步, 如果pp点的雅可比行列式是正数, 则FF在pp点的取向不变;如果是负数, 则FF的取向相反. 而从雅可比行列式的绝对值, 就可以知道函数FF在pp点的缩放因子;这就是为什么它出现在换元积分法中.

对于取向问题可以这么理解, 例如一个物体在平面上匀速运动, 如果施加一个正方向的力FF, 即取向相同, 则加速运动, 类比于速度的导数加速度为正;如果施加一个反方向的力FF, 即取向相反, 则减速运动, 类比于速度的导数加速度为负.

在数学中, 海森矩阵(Hessian matrix或Hessian)是一个自变量为向量的实值函数的二阶偏导数组成的方块矩阵, 此函数如下:

f(x1,x2…,xn)

如果f的所有二阶导数都存在, 那么f的海森矩阵即:

当A为正定矩阵时,f有极小值;
当A为负定矩阵时,f有极大值;

以上是关于雅可比矩阵(偏导数矩阵)的逆矩阵代表啥含义的主要内容,如果未能解决你的问题,请参考以下文章

jacobian矩阵是啥

一元函数的梯度和雅可比矩阵是否想用

怎么理解海森矩阵和雅可比矩阵

雅可比矩阵

Jacobian矩阵和Hessian矩阵

Jacobian矩阵,Hessian矩阵和牛顿法