《STL源代码剖析》---stl_deque.h阅读笔记
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了《STL源代码剖析》---stl_deque.h阅读笔记相关的知识,希望对你有一定的参考价值。
看完,《STL源代码剖析》---stl_deque.h阅读笔记(1)后。再看代码:
G++ 2.91.57,cygnus\cygwin-b20\include\g++\stl_deque.h 完整列表 /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1997 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /* NOTE: This is an internal header file, included by other STL headers. * You should not attempt to use it directly. */ #ifndef __SGI_STL_INTERNAL_DEQUE_H #define __SGI_STL_INTERNAL_DEQUE_H /* Class的恒长特性(invariants): 对于不论什么nonsingular iterator I(非退化的迭代器I) i.node是 map array 中的某个元素的地址。 i.node 所指内容是一个指针。指向某个缓冲区的起始位置。 i.first=*(i.node) i.last=i.first+node_size(即buffer_size()) i.cur是一个指针。指向[i.first i.last)之间。注意: 这意味着i.cur永远是一个dereferenceable pointer, 纵使i是一个 past-the-end iterator. Start 和 Finish总是 nonsingular iterator(非退化迭代器)。注意:这意味着 empty deque 一定会有一个node, 而一个具有N个元素的deque(N表示缓冲区大小), 一定会有两个nodes。 对于start.node 和 finish.node 以外的每个node, 当中每个元素都是一个经过初始化的。假设start.node==finish.nod,那么[start.cur finish.cur)都是经过初始化,而范围以外的元素 都是未初始化的空间。否则。[start.cur start.last)和[finish.first finish.cur)是经过初始化的,而 [start.first start.cur)和[finish.cur finish.last)是未初始化的空间。 [map map+map_size)是一个有效的、non-empty的范围。
[start.node finish.node]是一个幼小的范围,包括在[map map+map_size)之内。 范围[map map+map_size)内的不论什么一个指针会指向一个经过配置的node,当且仅当 该指针在范围[start.node finish.node]之内。 */ __STL_BEGIN_NAMESPACE #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32) #pragma set woff 1174 #endif /* 此函数用来计算缓冲区的大小 假设n不等于0。那么返回n,开发人员自己决定 否则:假设sz小于512,返回512/sz 假设sz大于512,返回1 */ inline size_t __deque_buf_size(size_t n, size_t sz) { return n != 0 ? n : (sz < 512 ? size_t(512 / sz) : size_t(1)); } //deque的迭代器,它没有继承std::iterator #ifndef __STL_NON_TYPE_TMPL_PARAM_BUG template <class T, class Ref, class Ptr, size_t BufSiz> struct __deque_iterator { typedef __deque_iterator<T, T&, T*, BufSiz> iterator; typedef __deque_iterator<T, const T&, const T*, BufSiz> const_iterator; static size_t buffer_size() {return __deque_buf_size(BufSiz, sizeof(T)); } #else /* __STL_NON_TYPE_TMPL_PARAM_BUG */ template <class T, class Ref, class Ptr> struct __deque_iterator { typedef __deque_iterator<T, T&, T*> iterator; typedef __deque_iterator<T, const T&, const T*> const_iterator; static size_t buffer_size() {return __deque_buf_size(0, sizeof(T)); } #endif //没有继承std::iterator,自定义5个迭代器相应的类型。 //其占用内存连续(部分连续)迭代器类型是random_access_iterator_tag typedef random_access_iterator_tag iterator_category; // (1) typedef T value_type; // (2) typedef Ptr pointer; // (3) typedef Ref reference; // (4) typedef size_t size_type; typedef ptrdiff_t difference_type; // (5) typedef T** map_pointer; //注意,是指针的指针 //map_pointer指向中控器,中控器的存储的是指针,指向node-buf结点缓冲区 typedef __deque_iterator self; /* 关于以下4个元素的意义以及和map中控器、缓冲区buffer的关系。见图(2) */ T* cur; // 迭代器所指元素 T* first; // 迭代器所指元素所在缓冲区的开头 T* last; // 迭代器所指元素所在缓冲区的结尾(结尾包括在缓冲区内) map_pointer node;//指向中控器的结点,这个结点指向迭代器所指元素所在的缓冲区 //迭代器的构造函数 //x是迭代器所指结点,y为中控器中的结点的值,指向x所指缓冲区 __deque_iterator(T* x, map_pointer y) : cur(x), first(*y), last(*y + buffer_size()), node(y) {} //默认构造函数 __deque_iterator() : cur(0), first(0), last(0), node(0) {} //用一个迭代器x初始化本迭代器 __deque_iterator(const iterator& x) : cur(x.cur), first(x.first), last(x.last), node(x.node) {} //迭代器须要重载的运算符 reference operator*() const { return *cur; } #ifndef __SGI_STL_NO_ARROW_OPERATOR //重载箭头是返回地址 pointer operator->() const { return &(operator*()); } #endif /* __SGI_STL_NO_ARROW_OPERATOR */ /* 两个迭代器之间的距离。这两个迭代器可能不在同一个buffer上。
*/ difference_type operator-(const self& x) const { return difference_type(buffer_size()) * (node - x.node - 1) + (cur - first) + (x.last - x.cur); } // 参考 More Effective C++, item6: Distinguish between prefix and // postfix forms of increment and decrement operators. /* 迭代器前进一步。 先++cur,再推断cur==last。说明cur不会指向last的。
last所指空间不存内容 */ self& operator++() { ++cur; // 前进一步 if (cur == last) { // 到了所在缓冲区的尾端了 set_node(node + 1); // 切换到下一个缓冲区 cur = first; // 的第一个元素 } return *this; } self operator++(int) { self tmp = *this; ++*this; return tmp; } //迭代器往回走一步。 self& operator--() { if (cur == first) { // 假设在所在缓冲区的头部 set_node(node - 1); // 切换到前一个缓冲区 cur = last; // 的最后一个元素 } --cur; // 直接往回走一步 return *this; } self operator--(int) { self tmp = *this; --*this; return tmp; } /* 迭代器向前进或后退n步(取决于n的正负)。这是支持random access iterator 所必须的操作。 假设这个操作不会是迭代器走出当前所在缓冲区。直接更改cur就可以。 假设这个操作使迭代器走出当前所在缓冲区,要计算出操作后在哪个缓冲区的哪个位置。 */ self& operator+=(difference_type n) { difference_type offset = n + (cur - first); if (offset >= 0 && offset < difference_type(buffer_size())) // 不会走出当前所在缓冲区 cur += n; else { // 走出了当前所在缓冲区 difference_type node_offset = offset > 0 ? offset / difference_type(buffer_size()) : -difference_type((-offset - 1) / buffer_size()) - 1; // 切换缓冲区 set_node(node + node_offset); // 找到切换缓冲区后,迭代器所指向的元素 cur = first + (offset - node_offset * difference_type(buffer_size())); } return *this; } self operator+(difference_type n) const { self tmp = *this; return tmp += n; // 调用operator+= } //调用operator+= self& operator-=(difference_type n) { return *this += -n; } self operator-(difference_type n) const { self tmp = *this; return tmp -= n; // 调用operator-= } reference operator[](difference_type n) const { return *(*this + n); } // 以上调用了operator*, operator+ /*迭代器关于比較的运算符的重载*/ bool operator==(const self& x) const { return cur == x.cur; } bool operator!=(const self& x) const { return !(*this == x); } bool operator<(const self& x) const { return (node == x.node) ? (cur < x.cur) : (node < x.node); } //切换缓冲区,更改了first和last,可是未更改cur void set_node(map_pointer new_node) { node = new_node; first = *new_node; last = first + difference_type(buffer_size()); } }; //编译器不支持片特性话partial specialization #ifndef __STL_CLASS_PARTIAL_SPECIALIZATION #ifndef __STL_NON_TYPE_TMPL_PARAM_BUG template <class T, class Ref, class Ptr, size_t BufSiz> inline random_access_iterator_tag iterator_category(const __deque_iterator<T, Ref, Ptr, BufSiz>&) { return random_access_iterator_tag(); } template <class T, class Ref, class Ptr, size_t BufSiz> inline T* value_type(const __deque_iterator<T, Ref, Ptr, BufSiz>&) { return 0; } template <class T, class Ref, class Ptr, size_t BufSiz> inline ptrdiff_t* distance_type(const __deque_iterator<T, Ref, Ptr, BufSiz>&) { return 0; } #else /* __STL_NON_TYPE_TMPL_PARAM_BUG */ template <class T, class Ref, class Ptr> inline random_access_iterator_tag iterator_category(const __deque_iterator<T, Ref, Ptr>&) { return random_access_iterator_tag(); } template <class T, class Ref, class Ptr> inline T* value_type(const __deque_iterator<T, Ref, Ptr>&) { return 0; } template <class T, class Ref, class Ptr> inline ptrdiff_t* distance_type(const __deque_iterator<T, Ref, Ptr>&) { return 0; } #endif /* __STL_NON_TYPE_TMPL_PARAM_BUG */ #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ /* deque的定义,默认使用alloc配置器 */ template <class T, class Alloc = alloc, size_t BufSiz = 0> class deque { public: // Basic types typedef T value_type; typedef value_type* pointer; typedef const value_type* const_pointer; typedef value_type& reference; typedef const value_type& const_reference; typedef size_t size_type; typedef ptrdiff_t difference_type; public: // 迭代器 #ifndef __STL_NON_TYPE_TMPL_PARAM_BUG typedef __deque_iterator<T, T&, T*, BufSiz> iterator; typedef __deque_iterator<T, const T&, const T&, BufSiz> const_iterator; #else /* __STL_NON_TYPE_TMPL_PARAM_BUG */ typedef __deque_iterator<T, T&, T*> iterator; typedef __deque_iterator<T, const T&, const T*> const_iterator; #endif /* __STL_NON_TYPE_TMPL_PARAM_BUG */ #ifdef __STL_CLASS_PARTIAL_SPECIALIZATION typedef reverse_iterator<const_iterator> const_reverse_iterator; typedef reverse_iterator<iterator> reverse_iterator; #else /* __STL_CLASS_PARTIAL_SPECIALIZATION */ typedef reverse_iterator<const_iterator, value_type, const_reference, difference_type> const_reverse_iterator; typedef reverse_iterator<iterator, value_type, reference, difference_type> reverse_iterator; #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ protected: // Internal typedefs // 指向中控器,是指针的指针(pointer of pointer of T) typedef pointer* map_pointer; // 空间配置器,用来配置缓冲区 typedef simple_alloc<value_type, Alloc> data_allocator; // 空间配置器。用来配置中控器 typedef simple_alloc<pointer, Alloc> map_allocator; static size_type buffer_size() { return __deque_buf_size(BufSiz, sizeof(value_type)); } //默认中控器大小为8 static size_type initial_map_size() { return 8; } protected: // Data members iterator start; // start.cur指向deque的第一个结点 iterator finish; // finish.cur指向迭代器deque的最后一个结点的后一个元素 map_pointer map; // 指向中控器。
事实上是指向中控器的第一个结点。 // 中控器是连续的,map_size定义了中控器的大小。 size_type map_size; // 中控器的大小。 public: // 对外的接口 iterator begin() { return start; } iterator end() { return finish; } const_iterator begin() const { return start; } const_iterator end() const { return finish; } reverse_iterator rbegin() { return reverse_iterator(finish); } reverse_iterator rend() { return reverse_iterator(start); } const_reverse_iterator rbegin() const { return const_reverse_iterator(finish); } const_reverse_iterator rend() const { return const_reverse_iterator(start); } reference operator[](size_type n) { return start[difference_type(n)]; // 调用 __deque_iterator<>::operator[] } const_reference operator[](size_type n) const { return start[difference_type(n)]; } reference front() { return *start; } // 调用 __deque_iterator<>::operator* //取出最后一个元素 reference back() { iterator tmp = finish; --tmp; // 调用 __deque_iterator<>::operator-- return *tmp; // 调用 __deque_iterator<>::operator* } //返回第一个元素。并不删除 const_reference front() const { return *start; } const_reference back() const { const_iterator tmp = finish; --tmp; return *tmp; } //deque中元素个数。后面有两个分号。迭代器调用了iterator::operator- size_type size() const { return finish - start;; } //deque最大容量。 size_type max_size() const { return size_type(-1); } //以下调用了operator::iterator== bool empty() const { return finish == start; } public: // Constructor, destructor. //默认构造函数 deque() : start(), finish(), map(0), map_size(0) // 以上 start() 和 finish() 调用 iterator(亦即 __deque_iterator) // 的 default constructor。令 cur, first, last, node 都为0。 { create_map_and_nodes(0); } //用一个deque构建新的deque deque(const deque& x) : start(), finish(), map(0), map_size(0) { create_map_and_nodes(x.size()); __STL_TRY { uninitialized_copy(x.begin(), x.end(), start); } //commit or rollback __STL_UNWIND(destroy_map_and_nodes()); } //构建大小为n。元素值为value的deque deque(size_type n, const value_type& value) : start(), finish(), map(0), map_size(0) { fill_initialize(n, value); } deque(int n, const value_type& value) : start(), finish(), map(0), map_size(0) { fill_initialize(n, value); } deque(long n, const value_type& value) : start(), finish(), map(0), map_size(0) { fill_initialize(n, value); } //构建大小为n的deque,默认值为T(),说明deque容器的元素要有默认构造函数 explicit deque(size_type n) : start(), finish(), map(0), map_size(0) { fill_initialize(n, value_type()); } /*用一段元素构建的确 */ #ifdef __STL_MEMBER_TEMPLATES template <class InputIterator> deque(InputIterator first, InputIterator last) : start(), finish(), map(0), map_size(0) { range_initialize(first, last, iterator_category(first)); } #else /* __STL_MEMBER_TEMPLATES */ deque(const value_type* first, const value_type* last) : start(), finish(), map(0), map_size(0) { create_map_and_nodes(last - first); __STL_TRY { uninitialized_copy(first, last, start); } __STL_UNWIND(destroy_map_and_nodes()); } deque(const_iterator first, const_iterator last) : start(), finish(), map(0), map_size(0) { create_map_and_nodes(last - first); __STL_TRY { uninitialized_copy(first, last, start); } __STL_UNWIND(destroy_map_and_nodes()); } #endif /* __STL_MEMBER_TEMPLATES */ ~deque() { destroy(start, finish); destroy_map_and_nodes(); } deque& operator= (const deque& x) { const size_type len = size(); if (&x != this) { if (len >= x.size()) erase(copy(x.begin(), x.end(), start), finish); else { const_iterator mid = x.begin() + difference_type(len); copy(x.begin(), mid, start); insert(finish, mid, x.end()); } } return *this; } void swap(deque& x) { __STD::swap(start, x.start); __STD::swap(finish, x.finish); __STD::swap(map, x.map); __STD::swap(map_size, x.map_size); } public: // push_* and pop_* //在deque末尾加入元素 void push_back(const value_type& t) { if (finish.cur != finish.last - 1) { // 当前缓冲区还有空间 construct(finish.cur, t); // 直接在可用空间构建 ++finish.cur; // 调整finish迭代器 } else // 当前缓冲区无可用空间(last不能存储元素用) push_back_aux(t); } //在deque头加入元素 void push_front(const value_type& t) { if (start.cur != start.first) { // 当前缓冲区还有空间 construct(start.cur - 1, t); --start.cur; } else // 当前缓冲区无空间可用了 push_front_aux(t); } //删掉末尾元素 void pop_back() { if (finish.cur != finish.first) {//最后一个缓冲区(finish指的缓冲区)有多于一个元素(含一个) --finish.cur; destroy(finish.cur); } else // 最后一个缓冲区无元素 pop_back_aux(); // 这里会进行缓冲区的释放工作 } //在deque头删除元素 void pop_front() { if (start.cur != start.last - 1) { // start.node所指缓冲区有多余一个元素(不含一个) destroy(start.cur); ++start.cur; } else // start.node所指缓冲区仅仅有一个元素 pop_front_aux(); // 这里会进行缓冲区释放工作 } public: // Insert /*在position处插入一个元素 假设position是deque的最前端。则调用push_front()。 假设position是deque的最末端,则调用push_back()。
在两个元素之间插入的话,就调用insert_aux。
*/ // 在position 处安插一個元素。其值为 x iterator insert(iterator position, const value_type& x) { if (position.cur == start.cur) { push_front(x); return start; } else if (position.cur == finish.cur) { push_back(x); iterator tmp = finish; --tmp; return tmp; } else { return insert_aux(position, x); // 交给insert_aux 去做 } } // 在position 处安插一個元素,其值为T() iterator insert(iterator position) { return insert(position, value_type()); } void insert(iterator pos, size_type n, const value_type& x); void insert(iterator pos, int n, const value_type& x) { insert(pos, (size_type) n, x); } void insert(iterator pos, long n, const value_type& x) { insert(pos, (size_type) n, x); } #ifdef __STL_MEMBER_TEMPLATES template <class InputIterator> void insert(iterator pos, InputIterator first, InputIterator last) { insert(pos, first, last, iterator_category(first)); } #else /* __STL_MEMBER_TEMPLATES */ void insert(iterator pos, const value_type* first, const value_type* last); void insert(iterator pos, const_iterator first, const_iterator last); #endif /* __STL_MEMBER_TEMPLATES */ /* 调整deque的大小。 假设deque变小,直接擦除掉多余的元素。 假设deque变大,则在deque后面插入元素补充。元素值为x/T() */ void resize(size_type new_size, const value_type& x) { const size_type len = size(); if (new_size < len) erase(start + new_size, finish); else insert(finish, new_size - len, x); } void resize(size_type new_size) { resize(new_size, value_type()); } public: // 清除 pos 所指的元素。 /*推断pos距离头近还是距离尾近,距离那个位置近就移动那个位置的元素,保证移动元素个数最少*/ iterator erase(iterator pos) { iterator next = pos; ++next; difference_type index = pos - start; // pos和deque开头元素的个数 if (index < (size() >> 1)) { // size() >> 1为size()/2。 //假设pos距离deque头比較近的话。deque的开头到pos元素向后移 copy_backward(start, pos, next); pop_front(); // 移动后,删除第一个元素 } else { // 否则pos+1到结尾元素向前移, copy(next, finish, pos); pop_back(); } return start + index; } iterator erase(iterator first, iterator last); void clear(); protected: // Internal construction/destruction void create_map_and_nodes(size_type num_elements); void destroy_map_and_nodes(); void fill_initialize(size_type n, const value_type& value); #ifdef __STL_MEMBER_TEMPLATES template <class InputIterator> void range_initialize(InputIterator first, InputIterator last, input_iterator_tag); template <class ForwardIterator> void range_initialize(ForwardIterator first, ForwardIterator last, forward_iterator_tag); #endif /* __STL_MEMBER_TEMPLATES */ protected: // Internal push_* and pop_* void push_back_aux(const value_type& t); void push_front_aux(const value_type& t); void pop_back_aux(); void pop_front_aux(); protected: // Internal insert functions #ifdef __STL_MEMBER_TEMPLATES template <class InputIterator> void insert(iterator pos, InputIterator first, InputIterator last, input_iterator_tag); template <class ForwardIterator> void insert(iterator pos, ForwardIterator first, ForwardIterator last, forward_iterator_tag); #endif /* __STL_MEMBER_TEMPLATES */ iterator insert_aux(iterator pos, const value_type& x); void insert_aux(iterator pos, size_type n, const value_type& x); #ifdef __STL_MEMBER_TEMPLATES template <class ForwardIterator> void insert_aux(iterator pos, ForwardIterator first, ForwardIterator last, size_type n); #else /* __STL_MEMBER_TEMPLATES */ void insert_aux(iterator pos, const value_type* first, const value_type* last, size_type n); void insert_aux(iterator pos, const_iterator first, const_iterator last, size_type n); #endif /* __STL_MEMBER_TEMPLATES */ //在队列头或者尾预留n个位置,假设缓冲区不够则开辟新缓冲区。
iterator reserve_elements_at_front(size_type n) { size_type vacancies = start.cur - start.first; if (n > vacancies) new_elements_at_front(n - vacancies); return start - difference_type(n); } iterator reserve_elements_at_back(size_type n) { size_type vacancies = (finish.last - finish.cur) - 1; if (n > vacancies) new_elements_at_back(n - vacancies); return finish + difference_type(n); } void new_elements_at_front(size_type new_elements); void new_elements_at_back(size_type new_elements); void destroy_nodes_at_front(iterator before_start); void destroy_nodes_at_back(iterator after_finish); protected: // Allocation of map and nodes // Makes sure the map has space for new nodes. Does not actually // add the nodes. Can invalidate map pointers. (And consequently, // deque iterators.) //在map尾加入缓冲区 void reserve_map_at_back (size_type nodes_to_add = 1) { if (nodes_to_add + 1 > map_size - (finish.node - map)) //map空间不够用,则开辟新的map空间。把原来map内容拷贝过来。释放原来的 reallocate_map(nodes_to_add, false); } //在map头加入缓冲区 void reserve_map_at_front (size_type nodes_to_add = 1) { if (nodes_to_add > start.node - map) reallocate_map(nodes_to_add, true); } void reallocate_map(size_type nodes_to_add, bool add_at_front); //配置新的缓冲区 pointer allocate_node() { return data_allocator::allocate(buffer_size()); } //释放缓冲区 void deallocate_node(pointer n) { data_allocator::deallocate(n, buffer_size()); } //重载比較运算符 #ifdef __STL_NON_TYPE_TMPL_PARAM_BUG public: bool operator==(const deque<T, Alloc, 0>& x) const { return size() == x.size() && equal(begin(), end(), x.begin()); } bool operator!=(const deque<T, Alloc, 0>& x) const { return size() != x.size() || !equal(begin(), end(), x.begin()); } bool operator<(const deque<T, Alloc, 0>& x) const { return lexicographical_compare(begin(), end(), x.begin(), x.end()); } #endif /* __STL_NON_TYPE_TMPL_PARAM_BUG */ }; // Non-inline member functions //不是内联函数 //在pos处插入n个元素,元素值为n template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::insert(iterator pos, size_type n, const value_type& x) { if (pos.cur == start.cur) {//pos是deque的头 iterator new_start = reserve_elements_at_front(n); uninitialized_fill(new_start, start, x); start = new_start; } else if (pos.cur == finish.cur) {//pos是deque的尾 iterator new_finish = reserve_elements_at_back(n); uninitialized_fill(finish, new_finish, x); finish = new_finish; } else //中间位置 insert_aux(pos, n, x); } #ifndef __STL_MEMBER_TEMPLATES //两个迭代器之间的元素插入到pos处 template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::insert(iterator pos, const value_type* first, const value_type* last) { size_type n = last - first; if (pos.cur == start.cur) {//deque的头 //先预留好位置 iterator new_start = reserve_elements_at_front(n); __STL_TRY { //在未初始化内存上直接构造 uninitialized_copy(first, last, new_start); start = new_start; } __STL_UNWIND(destroy_nodes_at_front(new_start)); } else if (pos.cur == finish.cur) { iterator new_finish = reserve_elements_at_back(n); __STL_TRY { uninitialized_copy(first, last, finish); finish = new_finish; } //commi or rollback __STL_UNWIND(destroy_nodes_at_back(new_finish)); } else insert_aux(pos, first, last, n); } template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::insert(iterator pos, const_iterator first, const_iterator last) { size_type n = last - first; if (pos.cur == start.cur) { iterator new_start = reserve_elements_at_front(n); __STL_TRY { uninitialized_copy(first, last, new_start); start = new_start; } __STL_UNWIND(destroy_nodes_at_front(new_start)); } else if (pos.cur == finish.cur) { iterator new_finish = reserve_elements_at_back(n); __STL_TRY { uninitialized_copy(first, last, finish); finish = new_finish; } __STL_UNWIND(destroy_nodes_at_back(new_finish)); } else insert_aux(pos, first, last, n); } #endif /* __STL_MEMBER_TEMPLATES */ //擦除两个迭代器之间的元素 template <class T, class Alloc, size_t BufSize> deque<T, Alloc, BufSize>::iterator deque<T, Alloc, BufSize>::erase(iterator first, iterator last) { if (first == start && last == finish) { // 假设是清除整个 deque clear(); // 直接调用 clear() 就可以 return finish; } else { difference_type n = last - first; // 擦除区间长度 difference_type elems_before = first - start; // 擦除区间前方元素的个数 if (elems_before < (size() - n) / 2) { // 假设前方的元素比更少, copy_backward(start, first, last); // 前方元素向后移(覆盖擦除区间) iterator new_start = start + n; // deque 的新起点 destroy(start, new_start); // 多于元素析构 // 释放多于元素所占内存 for (map_pointer cur = start.node; cur < new_start.node; ++cur) data_allocator::deallocate(*cur, buffer_size()); start = new_start; } else { // 后方元素更少 copy(last, finish, first); iterator new_finish = finish - n; destroy(new_finish, finish); for (map_pointer cur = new_finish.node + 1; cur <= finish.node; ++cur) data_allocator::deallocate(*cur, buffer_size()); finish = new_finish; } return start + elems_before; } } //清空deque。最后保留了一个缓冲区,这是deque的策略,也是其初始状态 template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::clear() { //以下针对头尾以外的缓冲区,它们肯定是满的。 for (map_pointer node = start.node + 1; node < finish.node; ++node) { // 先析构 destroy(*node, *node + buffer_size()); // 再释放 data_allocator::deallocate(*node, buffer_size()); } if (start.node != finish.node) { // 至少有2个以上(含)缓冲区 destroy(start.cur, start.last); // 头缓冲区元素析构 destroy(finish.first, finish.cur); // 尾缓冲区元素析构 // 释放尾缓冲区,保留了头缓冲区 data_allocator::deallocate(finish.first, buffer_size()); } else // 仅仅有一个缓冲区 destroy(start.cur, finish.cur); // 析构,可是不释放 finish = start; // 调整迭代器,deque为空 } //创建map,num_elements为元素个数 template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::create_map_and_nodes(size_type num_elements) { //须要多少个缓冲区,即相应多少个map_node,假设刚好整除。会多出一个来 size_type num_nodes = num_elements / buffer_size() + 1; //创建map结构,(假设少于8个)要多出2个来,前后各预留一个备用 map_size = max(initial_map_size(), num_nodes + 2); map = map_allocator::allocate(map_size); /*以下是nstart和nfinish指向map结构的最中间。这样能够使前后加入能力一样大。*/ map_pointer nstart = map + (map_size - num_nodes) / 2; map_pointer nfinish = nstart + num_nodes - 1; map_pointer cur; __STL_TRY { //为map内已用结点配置缓冲区。 for (cur = nstart; cur <= nfinish; ++cur) *cur = allocate_node(); } # ifdef __STL_USE_EXCEPTIONS catch(...) { // "commit or rollback" for (map_pointer n = nstart; n < cur; ++n) deallocate_node(*n); map_allocator::deallocate(map, map_size); throw; } # endif /* __STL_USE_EXCEPTIONS */ //为deque的迭代器start和end设定正确内容 start.set_node(nstart); finish.set_node(nfinish); start.cur = start.first; // first, cur都是public finish.cur = finish.first + num_elements % buffer_size(); //正如前面所说,假设刚好整除会多出一个map_node。此时cur指向多出的这个缓冲区的起始位置。 } // This is only used as a cleanup function in catch clauses. template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::destroy_map_and_nodes() { for (map_pointer cur = start.node; cur <= finish.node; ++cur) deallocate_node(*cur); map_allocator::deallocate(map, map_size); } //分配n个结点。用value初始化 template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::fill_initialize(size_type n, const value_type& value) { create_map_and_nodes(n); // 把deque的结构都安排好 map_pointer cur; __STL_TRY { // 每个结点缓冲区设定初始值。
for (cur = start.node; cur < finish.node; ++cur) uninitialized_fill(*cur, *cur + buffer_size(), value); //最后一个结点有点不一样。由于尾端可能有未用空间,不必设置初始值 uninitialized_fill(finish.first, finish.cur, value); } # ifdef __STL_USE_EXCEPTIONS catch(...) { // "commit or rollback" for (map_pointer n = start.node; n < cur; ++n) destroy(*n, *n + buffer_size()); destroy_map_and_nodes(); throw; } # endif /* __STL_USE_EXCEPTIONS */ } //用两个迭代器之间的元素初始化。迭代器类型不同,实现方法不同。 //input_iterator_tag类型迭代器一个一个初始化 //forward_iterator_tag(含其派生类型)内存处理工具初始化。 #ifdef __STL_MEMBER_TEMPLATES template <class T, class Alloc, size_t BufSize> template <class InputIterator> void deque<T, Alloc, BufSize>::range_initialize(InputIterator first, InputIterator last, input_iterator_tag) { create_map_and_nodes(0);//不分配结点 for ( ; first != last; ++first)//一个一个初始化 push_back(*first); } template <class T, class Alloc, size_t BufSize> template <class ForwardIterator> void deque<T, Alloc, BufSize>::range_initialize(ForwardIterator first, ForwardIterator last, forward_iterator_tag) { size_type n = 0; distance(first, last, n); create_map_and_nodes(n);//分配好结点 __STL_TRY { uninitialized_copy(first, last, start); } //commit or rollback __STL_UNWIND(destroy_map_and_nodes()); } #endif /* __STL_MEMBER_TEMPLATES */ //仅仅有当finish.cur == finish.last – 1才有调用。 //仅仅有当最后一个缓冲区仅仅剩一个未用空间时才调用 template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::push_back_aux(const value_type& t) { value_type t_copy = t; reserve_map_at_back(); // 若符合某重条件则必须重换一个map *(finish.node + 1) = allocate_node(); // 配置一个新结点(缓冲区) __STL_TRY { construct(finish.cur, t_copy); // 设置值 finish.set_node(finish.node + 1); // 改变finish,令其指向新结点 finish.cur = finish.first; // 设置 finish 的状态 } __STL_UNWIND(deallocate_node(*(finish.node + 1))); } // 仅仅有当start.cur == start.first才会调用。 // 第一个缓冲区没有未用空间时才会调用。和上面实现相似 template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::push_front_aux(const value_type& t) { value_type t_copy = t; reserve_map_at_front(); *(start.node - 1) = allocate_node(); __STL_TRY { start.set_node(start.node - 1); start.cur = start.last - 1; construct(start.cur, t_copy); } # ifdef __STL_USE_EXCEPTIONS catch(...) { // "commit or rollback" start.set_node(start.node + 1); start.cur = start.first; deallocate_node(*(start.node - 1)); throw; } # endif /* __STL_USE_EXCEPTIONS */ } // 仅仅有当finish.cur == finish.first才会调用 template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::pop_back_aux() { deallocate_node(finish.first); finish.set_node(finish.node - 1); finish.cur = finish.last - 1; destroy(finish.cur); } // 仅仅有当start.cur == start.last - 1时才会调用 template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::pop_front_aux() { destroy(start.cur); deallocate_node(start.first); start.set_node(start.node + 1); start.cur = start.first; } #ifdef __STL_MEMBER_TEMPLATES template <class T, class Alloc, size_t BufSize> template <class InputIterator> void deque<T, Alloc, BufSize>::insert(iterator pos, InputIterator first, InputIterator last, input_iterator_tag) { copy(first, last, inserter(*this, pos)); } //在pos处插入[first last)元素。相应迭代器类型为forward_iterator_tag(含派生) template <class T, class Alloc, size_t BufSize> template <class ForwardIterator> void deque<T, Alloc, BufSize>::insert(iterator pos, ForwardIterator first, ForwardIterator last, forward_iterator_tag) { size_type n = 0; distance(first, last, n); if (pos.cur == start.cur) { iterator new_start = reserve_elements_at_front(n); __STL_TRY { uninitialized_copy(first, last, new_start); start = new_start; } __STL_UNWIND(destroy_nodes_at_front(new_start)); } else if (pos.cur == finish.cur) { iterator new_finish = reserve_elements_at_back(n); __STL_TRY { uninitialized_copy(first, last, finish); finish = new_finish; } __STL_UNWIND(destroy_nodes_at_back(new_finish)); } else insert_aux(pos, first, last, n); } #endif /* __STL_MEMBER_TEMPLATES */ //在pos处插入一个元素,值为x。要推断插入点距头更近还是尾更近…… template <class T, class Alloc, size_t BufSize> typename deque<T, Alloc, BufSize>::iterator deque<T, Alloc, BufSize>::insert_aux(iterator pos, const value_type& x) { difference_type index = pos - start; value_type x_copy = x; if (index < size() / 2) { push_front(front()); iterator front1 = start; ++front1; iterator front2 = front1; ++front2; pos = start + index; iterator pos1 = pos; ++pos1; copy(front2, pos1, front1); } else { push_back(back()); iterator back1 = finish; --back1; iterator back2 = back1; --back2; pos = start + index; copy_backward(pos, back2, back1); } *pos = x_copy; return pos; } //在pos处插入n个元素,值为x template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::insert_aux(iterator pos, size_type n, const value_type& x) { const difference_type elems_before = pos - start; size_type length = size(); value_type x_copy = x; if (elems_before < length / 2) { iterator new_start = reserve_elements_at_front(n); iterator old_start = start; pos = start + elems_before; __STL_TRY { if (elems_before >= difference_type(n)) { iterator start_n = start + difference_type(n); uninitialized_copy(start, start_n, new_start); start = new_start; copy(start_n, pos, old_start); fill(pos - difference_type(n), pos, x_copy); } else { __uninitialized_copy_fill(start, pos, new_start, start, x_copy); start = new_start; fill(old_start, pos, x_copy); } } __STL_UNWIND(destroy_nodes_at_front(new_start)); } else { iterator new_finish = reserve_elements_at_back(n); iterator old_finish = finish; const difference_type elems_after = difference_type(length) - elems_before; pos = finish - elems_after; __STL_TRY { if (elems_after > difference_type(n)) { iterator finish_n = finish - difference_type(n); uninitialized_copy(finish_n, finish, finish); finish = new_finish; copy_backward(pos, finish_n, old_finish); fill(pos, pos + difference_type(n), x_copy); } else { __uninitialized_fill_copy(finish, pos + difference_type(n), x_copy, pos, finish); finish = new_finish; fill(pos, old_finish, x_copy); } } __STL_UNWIND(destroy_nodes_at_back(new_finish)); } } #ifdef __STL_MEMBER_TEMPLATES //在pos处插入n个元素,n个元素值为[first last) template <class T, class Alloc, size_t BufSize> template <class ForwardIterator> void deque<T, Alloc, BufSize>::insert_aux(iterator pos, ForwardIterator first, ForwardIterator last, size_type n) { const difference_type elems_before = pos - start; size_type length = size(); if (elems_before < length / 2) { iterator new_start = reserve_elements_at_front(n); iterator old_start = start; pos = start + elems_before; __STL_TRY { if (elems_before >= difference_type(n)) { iterator start_n = start + difference_type(n); uninitialized_copy(start, start_n, new_start); start = new_start; copy(start_n, pos, old_start); copy(first, last, pos - difference_type(n)); } else { ForwardIterator mid = first; advance(mid, difference_type(n) - elems_before); __uninitialized_copy_copy(start, pos, first, mid, new_start); start = new_start; copy(mid, last, old_start); } } __STL_UNWIND(destroy_nodes_at_front(new_start)); } else { iterator new_finish = reserve_elements_at_back(n); iterator old_finish = finish; const difference_type elems_after = difference_type(length) - elems_before; pos = finish - elems_after; __STL_TRY { if (elems_after > difference_type(n)) { iterator finish_n = finish - difference_type(n); uninitialized_copy(finish_n, finish, finish); finish = new_finish; copy_backward(pos, finish_n, old_finish); copy(first, last, pos); } else { ForwardIterator mid = first; advance(mid, elems_after); __uninitialized_copy_copy(mid, last, pos, finish, finish); finish = new_finish; copy(first, mid, pos); } } __STL_UNWIND(destroy_nodes_at_back(new_finish)); } } #else /* __STL_MEMBER_TEMPLATES */ template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::insert_aux(iterator pos, const value_type* first, const value_type* last, size_type n) { const difference_type elems_before = pos - start; size_type length = size(); if (elems_before < length / 2) { iterator new_start = reserve_elements_at_front(n); iterator old_start = start; pos = start + elems_before; __STL_TRY { if (elems_before >= difference_type(n)) { iterator start_n = start + difference_type(n); uninitialized_copy(start, start_n, new_start); start = new_start; copy(start_n, pos, old_start); copy(first, last, pos - difference_type(n)); } else { const value_type* mid = first + (difference_type(n) - elems_before); __uninitialized_copy_copy(start, pos, first, mid, new_start); start = new_start; copy(mid, last, old_start); } } __STL_UNWIND(destroy_nodes_at_front(new_start)); } else { iterator new_finish = reserve_elements_at_back(n); iterator old_finish = finish; const difference_type elems_after = difference_type(length) - elems_before; pos = finish - elems_after; __STL_TRY { if (elems_after > difference_type(n)) { iterator finish_n = finish - difference_type(n); uninitialized_copy(finish_n, finish, finish); finish = new_finish; copy_backward(pos, finish_n, old_finish); copy(first, last, pos); } else { const value_type* mid = first + elems_after; __uninitialized_copy_copy(mid, last, pos, finish, finish); finish = new_finish; copy(first, mid, pos); } } __STL_UNWIND(destroy_nodes_at_back(new_finish)); } } template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::insert_aux(iterator pos, const_iterator first, const_iterator last, size_type n) { const difference_type elems_before = pos - start; size_type length = size(); if (elems_before < length / 2) { iterator new_start = reserve_elements_at_front(n); iterator old_start = start; pos = start + elems_before; __STL_TRY { if (elems_before >= n) { iterator start_n = start + n; uninitialized_copy(start, start_n, new_start); start = new_start; copy(start_n, pos, old_start); copy(first, last, pos - difference_type(n)); } else { const_iterator mid = first + (n - elems_before); __uninitialized_copy_copy(start, pos, first, mid, new_start); start = new_start; copy(mid, last, old_start); } } __STL_UNWIND(destroy_nodes_at_front(new_start)); } else { iterator new_finish = reserve_elements_at_back(n); iterator old_finish = finish; const difference_type elems_after = length - elems_before; pos = finish - elems_after; __STL_TRY { if (elems_after > n) { iterator finish_n = finish - difference_type(n); uninitialized_copy(finish_n, finish, finish); finish = new_finish; copy_backward(pos, finish_n, old_finish); copy(first, last, pos); } else { const_iterator mid = first + elems_after; __uninitialized_copy_copy(mid, last, pos, finish, finish); finish = new_finish; copy(first, mid, pos); } } __STL_UNWIND(destroy_nodes_at_back(new_finish)); } } #endif /* __STL_MEMBER_TEMPLATES */ //在deque头分配新的结点 template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::new_elements_at_front(size_type new_elements) { size_type new_nodes = (new_elements + buffer_size() - 1) / buffer_size(); reserve_map_at_front(new_nodes); size_type i; __STL_TRY { for (i = 1; i <= new_nodes; ++i) *(start.node - i) = allocate_node(); } # ifdef __STL_USE_EXCEPTIONS catch(...) { for (size_type j = 1; j < i; ++j) deallocate_node(*(start.node - j)); throw; } # endif /* __STL_USE_EXCEPTIONS */ } //在deque尾分配新的结点 template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::new_elements_at_back(size_type new_elements) { size_type new_nodes = (new_elements + buffer_size() - 1) / buffer_size(); reserve_map_at_back(new_nodes); size_type i; __STL_TRY { for (i = 1; i <= new_nodes; ++i) *(finish.node + i) = allocate_node(); } # ifdef __STL_USE_EXCEPTIONS catch(...) { for (size_type j = 1; j < i; ++j) deallocate_node(*(finish.node + j)); throw; } # endif /* __STL_USE_EXCEPTIONS */ } //释放[before_start statr) template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::destroy_nodes_at_front(iterator before_start) { for (map_pointer n = before_start.node; n < start.node; ++n) deallocate_node(*n); } //释放(finish.node after_finish] template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::destroy_nodes_at_back(iterator after_finish) { for (map_pointer n = after_finish.node; n > finish.node; --n) deallocate_node(*n); } //加入map结点。指向新的缓冲区。add_at_front=true加入在map头,否则加入在尾 template <class T, class Alloc, size_t BufSize> void deque<T, Alloc, BufSize>::reallocate_map(size_type nodes_to_add, bool add_at_front) { size_type old_num_nodes = finish.node - start.node + 1; size_type new_num_nodes = old_num_nodes + nodes_to_add; map_pointer new_nstart; if (map_size > 2 * new_num_nodes) { new_nstart = map + (map_size - new_num_nodes) / 2 + (add_at_front ? nodes_to_add : 0); if (new_nstart < start.node) copy(start.node, finish.node + 1, new_nstart); else copy_backward(start.node, finish.node + 1, new_nstart + old_num_nodes); } else { size_type new_map_size = map_size + max(map_size, nodes_to_add) + 2; // 配置新的结点,准备给map使用 map_pointer new_map = map_allocator::allocate(new_map_size); new_nstart = new_map + (new_map_size - new_num_nodes) / 2 + (add_at_front ? nodes_to_add : 0); // 把原map 內容拷贝 copy(start.node, finish.node + 1, new_nstart); // 释放放原map map_allocator::deallocate(map, map_size); // 设置新map起始位置和大小 map = new_map; map_size = new_map_size; } // 又一次设置迭代器 start 和 finish start.set_node(new_nstart); finish.set_node(new_nstart + old_num_nodes - 1); } // Nonmember functions. //非成员函数,标准STL算法 #ifndef __STL_NON_TYPE_TMPL_PARAM_BUG template <class T, class Alloc, size_t BufSiz> bool operator==(const deque<T, Alloc, BufSiz>& x, const deque<T, Alloc, BufSiz>& y) { return x.size() == y.size() && equal(x.begin(), x.end(), y.begin()); } template <class T, class Alloc, size_t BufSiz> bool operator<(const deque<T, Alloc, BufSiz>& x, const deque<T, Alloc, BufSiz>& y) { return lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } #endif /* __STL_NON_TYPE_TMPL_PARAM_BUG */ #if defined(__STL_FUNCTION_TMPL_PARTIAL_ORDER) && !defined(__STL_NON_TYPE_TMPL_PARAM_BUG) template <class T, class Alloc, size_t BufSiz> inline void swap(deque<T, Alloc, BufSiz>& x, deque<T, Alloc, BufSiz>& y) { x.swap(y); } #endif #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32) #pragma reset woff 1174 #endif __STL_END_NAMESPACE #endif /* __SGI_STL_INTERNAL_DEQUE_H */ // Local Variables: // mode:C++ // End:
以上是关于《STL源代码剖析》---stl_deque.h阅读笔记的主要内容,如果未能解决你的问题,请参考以下文章