在多元线性回归中,如何用matlab求得各个变量的T统计值及其p值?

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了在多元线性回归中,如何用matlab求得各个变量的T统计值及其p值?相关的知识,希望对你有一定的参考价值。

回归模型为y=c0+c1*x1+c2*x2+c3*x3
如何求得c1 c2 c3的t统计值?

一般情况下,p值取0.05,如果想要更为精确,可以取0.01.
二、一元线性回归

2.1.命令 polyfit最小二乘多项式拟合

[p,S]=polyfit(x,y,m)

多项式y=a1xm+a2xm-1+…+amx+am+1

其中x=(x1,x2,…,xm)x1…xm为(n*1)的矩阵;

y为(n*1)的矩阵;

p=(a1,a2,…,am+1)是多项式y=a1xm+a2xm-1+…+amx+am+1的系数;

S是一个矩阵,用来估计预测误差.

2.2.命令 polyval多项式函数的预测值

Y=polyval(p,x)求polyfit所得的回归多项式在x处的预测值Y;

p是polyfit函数的返回值;

x和polyfit函数的x值相同。

2.3.命令 polyconf 残差个案次序图

[Y,DELTA]=polyconf(p,x,S,alpha)求polyfit所得的回归多项式在x处的预测值Y及预测值的显著性为1-alpha的置信区间DELTA;alpha缺省时为0.05。

p是polyfit函数的返回值;

x和polyfit函数的x值相同;

S和polyfit函数的S值相同。

2.4 命令 polytool(x,y,m)一元多项式回归命令

2.5.命令regress多元线性回归(可用于一元线性回归)

b=regress( Y, X )

[b, bint,r,rint,stats]=regress(Y,X,alpha)

b 回归系数

bint 回归系数的区间估计

r 残差

rint 残差置信区间

stats 用于检验回归模型的统计量,有三个数值:相关系数R2、F值、与F对应的概率p,相关系数R2越接近1,说明回归方程越显著;F > F1-α(k,n-k-1)时拒绝H0,F越大,说明回归方程越显著;与F对应的概率p 时拒绝H0,回归模型成立。

Y为n*1的矩阵;

X为(ones(n,1),x1,…,xm)的矩阵;

alpha显著性水平(缺省时为0.05)。

三、多元线性回归

3.1.命令 regress(见2。5)

3.2.命令 rstool 多元二项式回归

命令:rstool(x,y,’model’, alpha)

x 为n*m矩阵

y为 n维列向量

model 由下列4个模型中选择1个(用字符串输入,缺省时为线性模型):

linear(线性):

purequadratic(纯二次):

interaction(交叉):

quadratic(完全二次):

alpha 显著性水平(缺省时为0.05)

返回值beta 系数

返回值rmse剩余标准差

返回值residuals残差

四、非线性回归

4.1.命令 nlinfit

[beta,R,J]=nlinfit(X,Y,’’model’,beta0)

X 为n*m矩阵

Y为 n维列向量

model为自定义函数

beta0为估计的模型系数

beta为回归系数

R为残差

J

4.2.命令 nlintool

nlintool(X,Y,’model’,beta0,alpha)

X 为n*m矩阵

Y为 n维列向量

model为自定义函数

beta0为估计的模型系数

alpha显著性水平(缺省时为0.05)

4.3.命令 nlparci

betaci=nlparci(beta,R,J)

beta为回归系数

R为残差

J

返回值为回归系数beta的置信区间

4.4.命令 nlpredci

[Y,DELTA]=nlpredci(‘model’,X,beta,R,J)

Y为预测值

DELTA为预测值的显著性为1-alpha的置信区间;alpha缺省时为0.05。

X 为n*m矩阵

model为自定义函数

beta为回归系数

R为残差
参考技术A help regstats

数学建模MATLAB应用实战系列(八十二)-数学建模非线性多元回归(附MATLAB代码)

前言

 

在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。因此多元线性回归比一元线性回归的实用意义更大。

前面写过多元线性回归,它用于找到因变量于多个自变量之间的关系,比较适用于自变量和因变量呈线性的关系,但实际上很多自变量和因变量之间不完全是线性关系,这时候可以通过方法转化为线性的变量,再进行多元线性回归。

01实例分析

还是用多元线性回归中的经典鲍鱼数据集为例,最后Rings是需要预测的即鲍鱼的年龄,用性别(1:雄性,M;0:中性l ; -1:雌性,F)和一些体征如长度、高度、重量等进行预测。因变量是鲍鱼的年龄,有多个自变量,多元线性回归适用于这个问题。鲍鱼数据形式如下:

02原理解析

多元线性回归表达式

多元线性回归经典表达式为:

以上是关于在多元线性回归中,如何用matlab求得各个变量的T统计值及其p值?的主要内容,如果未能解决你的问题,请参考以下文章

如何用spss进行非线性回归模型操作步骤

如何用matlab来求解多元一次现性方程

如何使用spss进行一元非线性回归分析

如何用SPSS做多项Logistic回归

如何用spss做多因素回归分析

如何用Python进行线性回归以及误差分析