ros下xtion用法
Posted 每天一点积累
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了ros下xtion用法相关的知识,希望对你有一定的参考价值。
xtion用openni2_launch openni2.launch就可以打开,但是在使用过程中有一些定制性问题:
首先弄清openni2_launch 中一些topic都是什么意思
http://wiki.ros.org/depth_image_proc
关于depthmap是米制还是毫米制:
All nodelets (besides convert_metric) in this package support both standard floating point depth images and OpenNI-specific uint16 depth images. Thus when working with OpenNI cameras (e.g. the Kinect), you can save a few CPU cycles by using the uint16 raw topics instead of the float topics.
/depth/image_raw是uint16格式
/depth_registered/image是CV32FC1
关于topic中rect解释:
http://wiki.ros.org/rgbd_launch
depth_processing (bool, default: true)
Given the raw depth image, rectifies it, converts both the raw and rectified images to metric format (uint16 -> float), and produces a pointcloud. Requires depth/image_raw. Produces depth/image_rect_raw (rectified), depth/image (metric), depth/image_rect (rectified, metric), depth/points (pointcloud).
depth_registered_processing (bool, default: true)
Generates a registered RGBD pointcloud from the device data (requires rgb_processing to be enabled). A pointcloud can be generated through a software registration pipeline (sw_registered_processing = true, used when depth_registration for device driver is set to false ) by registering the depth image from the depth frame to an RGB frame and merging with the RGB image. If software registration is being used, depth_processing needs to be enabled. Alternatively, the device can be directly asked to generate a registered depth image in the RGB frame with can be merged with the RGB Image through the hardware registration pipeline (hw_registered_processing = true, used when depth_registration for device driver is set to true)
在使用过程中出现了
/camera/depth_registered/sw_registered/image_rect_raw
图像显示之后出现很多不规则横杠和竖杠
更改为hw_registered模式就好了
具体更改openni2_launch openni2.launch里
<arg name="depth_registration" default="true" />就好了
关于怎么保存pcd文件
ros里提供了一个包 pcl_ros
使用pointcloud_to_pcd
以下是一个launch file
<launch> <arg name="viewer" default = "true" /> <arg name="image_saver" default="false" /> <arg name="pcd_saver" default = "false" /> <node pkg="image_view" type="image_view" respawn="false" name="rgb_image_viewer" output="screen" if="$(arg viewer)"> <remap from="image" to="/camera/rgb/image_rect_color"/> </node> <node pkg="image_view" type="image_view" respawn="false" name="depth_image_viewer" output="screen" if="$(arg viewer)"> <remap from="image" to="/camera/depth_registered/hw_registered/image_rect"/> </node> <include file="$(find openni2_launch)/launch/openni2.launch" /> <node pkg="pioneer_zed" type="test_sycronizer" name="rgb_depth_sycronizer" if="$(arg image_saver)"/> <node pkg="pcl_ros" type="pointcloud_to_pcd" name="pointcloud_to_pcd" output="screen" if="$(arg pcd_saver)"> <remap from="input" to="/camera/depth_registered/points"/> <param name="prefix" value="/home/ubuntu/Workspaces/dataset/homemade/pcd/vel_" /> </node> </launch>
rgb和depth同步问题
这个可以用message filter来实现
下面是一个程序实现:
#include <ros/ros.h> #include "RGBDImgsSycronizer.h" int main(int argc, char** argv) { ros::init(argc, argv, "tf_broadcaster"); ros::NodeHandle nh; RGBDImgsSycronizer test_sycronizer(nh,"/camera/rgb/image_rect_color","/camera/depth_registered/hw_registered/image_rect_raw","/home/ubuntu/Workspaces/dataset/homemade"); ros::spin(); }
#include "RGBDImgsSycronizer.h" #include <boost/bind/bind.hpp> RGBDImgsSycronizer::~RGBDImgsSycronizer() { fs.release(); } RGBDImgsSycronizer::RGBDImgsSycronizer(ros::NodeHandle& nh, string imageColorTopic, string imageDepthTopic,string storeDirectory): nh_(nh), imageDepth_sub(nh_, imageDepthTopic, 1), imageColor_sub(nh_, imageColorTopic, 1), sync(MySyncPolicy(10), imageColor_sub, imageDepth_sub), storePath(storeDirectory), fs(storePath+"/depthData.yml", FileStorage::WRITE) { ROS_INFO("RGBDImgsSycronizer constrcting"); // ApproximateTime takes a queue size as its constructor argument, hence MySyncPolicy(10) sync.registerCallback(boost::bind(&RGBDImgsSycronizer::call_back, this,_1, _2)); data_ready = false; } //注意这里需要加const void RGBDImgsSycronizer::call_back(const ImageConstPtr &imageColor, const ImageConstPtr &imageDepth) { static int num = 1; ROS_INFO("recive"); cv_bridge::CvImagePtr imageColorPtr = cv_bridge::toCvCopy(imageColor); OpencvimageColor = imageColorPtr->image; cv_bridge::CvImagePtr imageDepthPtr = cv_bridge::toCvCopy(imageDepth); OpencvImageDepth = imageDepthPtr->image; boost::format imageColorStr(storePath+"/color/imageColor%d.png"),imageDepthStr(storePath+"/depth/imageDepth%d.png"); imageColorStr%num; imageDepthStr%num; string strToDisplay = imageColorStr.str(); if(!OpencvimageColor.empty()) ROS_INFO("%s",strToDisplay.c_str()); //store color image imwrite(imageColorStr.str(),OpencvimageColor); //store depth data boost::format imageDepthDataStr("imageDepthData%d"); imageDepthDataStr%num; fs<<imageDepthDataStr.str()<<OpencvImageDepth; //store depth image double* minVal = new double, *maxVal = new double; Mat OpencvImageDepthImage; OpencvImageDepth.copyTo(OpencvImageDepthImage); minMaxIdx(OpencvImageDepthImage,minVal,maxVal); ROS_INFO("OpencvImageDepthImage type:%d ",OpencvImageDepthImage.type()); if(maxVal==NULL) ROS_INFO(" maxVal maxVal"); MatIterator_<float> it, end; for( it = OpencvImageDepthImage.begin<float>(), end = OpencvImageDepthImage.end<float>(); it != end; ++it) *it = ((*it)/(*maxVal)*255); Mat OpencvImageDepthImage8U; OpencvImageDepthImage.convertTo(OpencvImageDepthImage8U,CV_8UC1); imwrite(imageDepthStr.str(),OpencvImageDepthImage8U); num++; delete minVal; delete maxVal; } bool RGBDImgsSycronizer::is_data_ready() { if(data_ready) return true; else return false; }
以上是关于ros下xtion用法的主要内容,如果未能解决你的问题,请参考以下文章
OpenNI2、BeagleBone Black、ASUS XTION 摄像头:在 640x480 下获取颜色流时出现问题