Machine Learn in Action(K-近邻算法)

Posted Hello未来

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Machine Learn in Action(K-近邻算法)相关的知识,希望对你有一定的参考价值。

使用K-近邻算法将某点[0.6, 0.6]划分到某个类(A, B)中。

from numpy import *
import operator


def classify0(inX, dataSet, labels, k):

    dataSetSize = dataSet.shape[0]  # 数组行数
    diffMat = tile(inX, (dataSetSize, 1)) - dataSet
    sqDiffMat = diffMat ** 2
    sqDistances = sqDiffMat.sum(axis=1)
    distances = sqDistances ** 0.5
    sortedDistIndicies = distances.argsort()

    classCount = {}
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
    # operator.itemgetter(1)根据iterable的第二个值域排序
    sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]

if __name__ == __main__:
    # 定义训练集
    group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]])
    labels = [A, A, B, B]
    print(classify0([0.6, 0.6], group, labels, 3))

 

以上是关于Machine Learn in Action(K-近邻算法)的主要内容,如果未能解决你的问题,请参考以下文章

Machine Learning in Action机器学习——第二章k-近邻算法代码详解

机器学习实战 [Machine learning in action]

Machine Learning In Action

machine learning in action , part 1

machine learning in action Record

决策树(chap3)Machine Learning In Action学习笔记