一般互联网公司 如何进行高并发的架构
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了一般互联网公司 如何进行高并发的架构相关的知识,希望对你有一定的参考价值。
一、什么是高并发高并发(High Concurrency)是互联网分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计保证系统能够同时并行处理很多请求。
高并发相关常用的一些指标有响应时间(Response Time),吞吐量(Throughput),每秒查询率QPS(Query Per Second),并发用户数等。
响应时间:系统对请求做出响应的时间。例如系统处理一个HTTP请求需要200ms,这个200ms就是系统的响应时间。
吞吐量:单位时间内处理的请求数量。
QPS:每秒响应请求数。在互联网领域,这个指标和吞吐量区分的没有这么明显。
并发用户数:同时承载正常使用系统功能的用户数量。例如一个即时通讯系统,同时在线量一定程度上代表了系统的并发用户数。
二、如何提升系统的并发能力
互联网分布式架构设计,提高系统并发能力的方式,方法论上主要有两种:垂直扩展(Scale Up)与水平扩展(Scale Out)。
垂直扩展:提升单机处理能力。垂直扩展的方式又有两种:
(1)增强单机硬件性能,例如:增加CPU核数如32核,升级更好的网卡如万兆,升级更好的硬盘如SSD,扩充硬盘容量如2T,扩充系统内存如128G;
(2)提升单机架构性能,例如:使用Cache来减少IO次数,使用异步来增加单服务吞吐量,使用无锁数据结构来减少响应时间;
在互联网业务发展非常迅猛的早期,如果预算不是问题,强烈建议使用“增强单机硬件性能”的方式提升系统并发能力,因为这个阶段,公司的战略往往是发展业务抢时间,而“增强单机硬件性能”往往是最快的方法。
不管是提升单机硬件性能,还是提升单机架构性能,都有一个致命的不足:单机性能总是有极限的。所以互联网分布式架构设计高并发终极解决方案还是水平扩展。
水平扩展:只要增加服务器数量,就能线性扩充系统性能。水平扩展对系统架构设计是有要求的,如何在架构各层进行可水平扩展的设计,以及互联网公司架构各层常见的水平扩展实践,是本文重点讨论的内容。
三、常见的互联网分层架构
常见互联网分布式架构如上,分为:
(1)客户端层:典型调用方是浏览器browser或者手机应用APP
(2)反向代理层:系统入口,反向代理
(3)站点应用层:实现核心应用逻辑,返回html或者json
(4)服务层:如果实现了服务化,就有这一层
(5)数据-缓存层:缓存加速访问存储
(6)数据-数据库层:数据库固化数据存储
整个系统各层次的水平扩展,又分别是如何实施的呢?
四、分层水平扩展架构实践
反向代理层的水平扩展
反向代理层的水平扩展,是通过“DNS轮询”实现的:dns-server对于一个域名配置了多个解析ip,每次DNS解析请求来访问dns-server,会轮询返回这些ip。
当nginx成为瓶颈的时候,只要增加服务器数量,新增nginx服务的部署,增加一个外网ip,就能扩展反向代理层的性能,做到理论上的无限高并发。
站点层的水平扩展
站点层的水平扩展,是通过“nginx”实现的。通过修改nginx.conf,可以设置多个web后端。
当web后端成为瓶颈的时候,只要增加服务器数量,新增web服务的部署,在nginx配置中配置上新的web后端,就能扩展站点层的性能,做到理论上的无限高并发。
服务层的水平扩展
服务层的水平扩展,是通过“服务连接池”实现的。
站点层通过RPC-client调用下游的服务层RPC-server时,RPC-client中的连接池会建立与下游服务多个连接,当服务成为瓶颈的时候,只要增加服务器数量,新增服务部署,在RPC-client处建立新的下游服务连接,就能扩展服务层性能,做到理论上的无限高并发。如果需要优雅的进行服务层自动扩容,这里可能需要配置中心里服务自动发现功能的支持。
数据层的水平扩展
在数据量很大的情况下,数据层(缓存,数据库)涉及数据的水平扩展,将原本存储在一台服务器上的数据(缓存,数据库)水平拆分到不同服务器上去,以达到扩充系统性能的目的。
互联网数据层常见的水平拆分方式有这么几种,以数据库为例:
按照范围水平拆分
每一个数据服务,存储一定范围的数据,上图为例:
这个方案的好处是:
(1)规则简单,service只需判断一下uid范围就能路由到对应的存储服务;
(2)数据均衡性较好;
(3)比较容易扩展,可以随时加一个uid[2kw,3kw]的数据服务;
不足是:
(1)请求的负载不一定均衡,一般来说,新注册的用户会比老用户更活跃,大range的服务请求压力会更大;
按照哈希水平拆分
每一个数据库,存储某个key值hash后的部分数据,上图为例:
这个方案的好处是:
(1)规则简单,service只需对uid进行hash能路由到对应的存储服务;
(2)数据均衡性较好;
(3)请求均匀性较好;
不足是:
(1)不容易扩展,扩展一个数据服务,hash方法改变时候,可能需要进行数据迁移;
这里需要注意的是,通过水平拆分来扩充系统性能,与主从同步读写分离来扩充数据库性能的方式有本质的不同。
通过水平拆分扩展数据库性能:
(1)每个服务器上存储的数据量是总量的1/n,所以单机的性能也会有提升;
(2)n个服务器上的数据没有交集,那个服务器上数据的并集是数据的全集;
(3)数据水平拆分到了n个服务器上,理论上读性能扩充了n倍,写性能也扩充了n倍(其实远不止n倍,因为单机的数据量变为了原来的1/n);
通过主从同步读写分离扩展数据库性能:
(1)每个服务器上存储的数据量是和总量相同;
(2)n个服务器上的数据都一样,都是全集;
(3)理论上读性能扩充了n倍,写仍然是单点,写性能不变;
缓存层的水平拆分和数据库层的水平拆分类似,也是以范围拆分和哈希拆分的方式居多,就不再展开。
五、总结
高并发(High Concurrency)是互联网分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计保证系统能够同时并行处理很多请求。
提高系统并发能力的方式,方法论上主要有两种:垂直扩展(Scale Up)与水平扩展(Scale Out)。前者垂直扩展可以通过提升单机硬件性能,或者提升单机架构性能,来提高并发性,但单机性能总是有极限的,互联网分布式架构设计高并发终极解决方案还是后者:水平扩展。
互联网分层架构中,各层次水平扩展的实践又有所不同:
(1)反向代理层可以通过“DNS轮询”的方式来进行水平扩展;
(2)站点层可以通过nginx来进行水平扩展;
(3)服务层可以通过服务连接池来进行水平扩展;
(4)数据库可以按照数据范围,或者数据哈希的方式来进行水平扩展;
各层实施水平扩展后,能够通过增加服务器数量的方式来提升系统的性能,做到理论上的性能无限。 参考技术A
高并发我认为一般最简单的就 缓存+消息队列 可以解决很多问题, 我看到 https:www.itkc8.com这个网站上有很多关于高并发之类的学习资料,可以去看看
面试官:消息中间件如何实现每秒几十万的高并发写入?石杉的架构笔记
周一至周五早8点半!精品技术文章准时送上!
目录
1、页缓存技术 + 磁盘顺序写
2、零拷贝技术
3、最后的总结
“ 这篇文章来聊一下Kafka的一些架构设计原理,这也是互联网公司面试时非常高频的技术考点。
Kafka是高吞吐低延迟的高并发、高性能的消息中间件,在大数据领域有极为广泛的运用。配置良好的Kafka集群甚至可以做到每秒几十万、上百万的超高并发写入。
那么Kafka到底是如何做到这么高的吞吐量和性能的呢?这篇文章我们来一点一点说一下。
1、页缓存技术 + 磁盘顺序写
首先Kafka每次接收到数据都会往磁盘上去写,如下图所示。
那么在这里我们不禁有一个疑问了,如果把数据基于磁盘来存储,频繁的往磁盘文件里写数据,这个性能会不会很差?大家肯定都觉得磁盘写性能是极差的。
没错,要是真的跟上面那个图那么简单的话,那确实这个性能是比较差的。
但是实际上Kafka在这里有极为优秀和出色的设计,就是为了保证数据写入性能,首先Kafka是基于操作系统的页缓存来实现文件写入的。
操作系统本身有一层缓存,叫做page cache,是在内存里的缓存,我们也可以称之为os cache,意思就是操作系统自己管理的缓存。
你在写入磁盘文件的时候,可以直接写入这个os cache里,也就是仅仅写入内存中,接下来由操作系统自己决定什么时候把os cache里的数据真的刷入磁盘文件中。
仅仅这一个步骤,就可以将磁盘文件写性能提升很多了,因为其实这里相当于是在写内存,不是在写磁盘,大家看下图。
接着另外一个就是kafka写数据的时候,非常关键的一点,他是以磁盘顺序写的方式来写的。也就是说,仅仅将数据追加到文件的末尾,不是在文件的随机位置来修改数据。
普通的机械磁盘如果你要是随机写的话,确实性能极差,也就是随便找到文件的某个位置来写数据。
但是如果你是追加文件末尾按照顺序的方式来写数据的话,那么这种磁盘顺序写的性能基本上可以跟写内存的性能本身也是差不多的。
所以大家就知道了,上面那个图里,Kafka在写数据的时候,一方面基于了os层面的page cache来写数据,所以性能很高,本质就是在写内存罢了。
另外一个,他是采用磁盘顺序写的方式,所以即使数据刷入磁盘的时候,性能也是极高的,也跟写内存是差不多的。
基于上面两点,kafka就实现了写入数据的超高性能。
那么大家想想,假如说kafka写入一条数据要耗费1毫秒的时间,那么是不是每秒就是可以写入1000条数据?
但是假如kafka的性能极高,写入一条数据仅仅耗费0.01毫秒呢?那么每秒是不是就可以写入10万条数?
所以要保证每秒写入几万甚至几十万条数据的核心点,就是尽最大可能提升每条数据写入的性能,这样就可以在单位时间内写入更多的数据量,提升吞吐量。
2、零拷贝技术
说完了写入这块,再来谈谈消费这块。
大家应该都知道,从Kafka里我们经常要消费数据,那么消费的时候实际上就是要从kafka的磁盘文件里读取某条数据然后发送给下游的消费者,如下图所示。
那么这里如果频繁的从磁盘读数据然后发给消费者,性能瓶颈在哪里呢?
假设要是kafka什么优化都不做,就是很简单的从磁盘读数据发送给下游的消费者,那么大概过程如下所示:
先看看要读的数据在不在os cache里,如果不在的话就从磁盘文件里读取数据后放入os cache。
接着从操作系统的os cache里拷贝数据到应用程序进程的缓存里,再从应用程序进程的缓存里拷贝数据到操作系统层面的Socket缓存里,最后从Socket缓存里提取数据后发送到网卡,最后发送出去给下游消费。
整个过程,如下图所示:
大家看上图,很明显可以看到有两次没必要的拷贝吧!
一次是从操作系统的cache里拷贝到应用进程的缓存里,接着又从应用程序缓存里拷贝回操作系统的Socket缓存里。
而且为了进行这两次拷贝,中间还发生了好几次上下文切换,一会儿是应用程序在执行,一会儿上下文切换到操作系统来执行。
所以这种方式来读取数据是比较消耗性能的。
Kafka为了解决这个问题,在读数据的时候是引入零拷贝技术。
也就是说,直接让操作系统的cache中的数据发送到网卡后传输给下游的消费者,中间跳过了两次拷贝数据的步骤,Socket缓存中仅仅会拷贝一个描述符过去,不会拷贝数据到Socket缓存。
大家看下图,体会一下这个精妙的过程:
通过零拷贝技术,就不需要把os cache里的数据拷贝到应用缓存,再从应用缓存拷贝到Socket缓存了,两次拷贝都省略了,所以叫做零拷贝。
对Socket缓存仅仅就是拷贝数据的描述符过去,然后数据就直接从os cache中发送到网卡上去了,这个过程大大的提升了数据消费时读取文件数据的性能。
而且大家会注意到,在从磁盘读数据的时候,会先看看os cache内存中是否有,如果有的话,其实读数据都是直接读内存的。
如果kafka集群经过良好的调优,大家会发现大量的数据都是直接写入os cache中,然后读数据的时候也是从os cache中读。
相当于是Kafka完全基于内存提供数据的写和读了,所以这个整体性能会极其的高。
说个题外话,下回有机会给大家说一下Elasticsearch的架构原理,其实ES底层也是大量基于os cache实现了海量数据的高性能检索的,跟Kafka原理类似。
3、最后的总结
通过这篇文章对kafka底层的页缓存技术的使用,磁盘顺序写的思路,以及零拷贝技术的运用,大家应该就明白Kafka每台机器在底层对数据进行写和读的时候采取的是什么样的思路,为什么他的性能可以那么高,做到每秒几十万的吞吐量。
这种设计思想对我们平时自己设计中间件的架构,或者是出去面试的时候,都有很大的帮助。
End
欢迎扫描下方二维码,持续关注,一大波原创系列文章正在路上:
石杉的架构笔记(id:shishan100)
十余年BAT架构经验倾囊相授
以上是关于一般互联网公司 如何进行高并发的架构的主要内容,如果未能解决你的问题,请参考以下文章
每一个程序员都应该知道的高并发处理技巧创业公司如何解决高并发问题互联网高并发问题解决思路caoz大神多年经验总结分享(转)
每一个程序员都应该知道的高并发处理技巧创业公司如何解决高并发问题互联网高并发问题解决思路caoz大神多年经验总结分享
java程序猿值得一看BAT等大型互联网公司的网站架构演化历程