通过SSH,使用Public-Key Infrastructure (PKI)认证,怎么配置登陆Linux服务器

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了通过SSH,使用Public-Key Infrastructure (PKI)认证,怎么配置登陆Linux服务器相关的知识,希望对你有一定的参考价值。

通过SSH,使用Public-Key Infrastructure (PKI)认证,怎么配置登陆Linux服务器

参考技术A #ssh-keygen -t rsa -f ~/.ssh/id_rsa -P '' 生成密钥
#ssh-copy-id -i .ssh/id_rsa.pub root@node2 ##将公钥文件发送到节点2上边
---------------------------上边是配置双机互信的过程。
如果实现xshell的登录。
#ssh-keygen -t rsa -f ~/.ssh/id_rsa -P '' 生成密钥

然后找到公钥导入xshell中即可。

通过公钥解密密文思路(256bits RSA)

1.分解公钥,分解出ne:

  1.1使用openssl(红色标记是e与n)

 1 [email protected]:~/download/iscc-ctf/RSA$ openssl rsa -pubin -text -modulus -in public.pem
 2 
 3 Public-Key: (256 bit)
 4 
 5 Modulus:
 6 
 7 00:a4:10:06:de:fd:37:8b:73:95:b4:e2:eb:1e:c9:
 8 
 9 bf:56:a6:1c:d9:c3:b5:a0:a7:35:28:52:1e:eb:2f:
10 
11 b8:17:a7
12 
13 Exponent: 65537 (0x10001)                #e
14 
15 Modulus=A41006DEFD378B7395B4E2EB1EC9BF56A61CD9C3B5A0A73528521EEB2FB817A7 #n
16 
17 writing RSA key
18 
19 -----BEGIN PUBLIC KEY-----
20 
21 MDwwDQYJKoZIhvcNAQEBBQADKwAwKAIhAKQQBt79N4tzlbTi6x7Jv1amHNnDtaCn
22 
23 NShSHusvuBenAgMBAAE=
24 
25 -----END PUBLIC KEY-----
26 
27 [email protected]:~/download/iscc-ctf/RSA$

 

 


1.2使用脚本

 1 from Crypto.PublicKey import RSA
 2 
 3 pub = RSA.importKey(open(xxx\public.pem).read())
 4 
 5 n = long(pub.n)
 6 
 7 e = long(pub.e)
 8 
 9 print n
10 
11 print e

 

 

2.使用msieve来对n来分解因式pq:(红色标记部分)

 1 [email protected]:~/download/iscc-ctf/RSA$ msieve 0XA41006DEFD378B7395B4E2EB1EC9BF56A61CD9C3B5A0A73528521EEB2FB817A7 -v
 2 
 3 
 4 Msieve v. 1.54 (SVN 1009)
 5 
 6 Wed May 31 17:02:38 2017
 7 
 8 random seeds: 31130210 1225946d
 9 
10 factoring 74207624142945242263057035287110983967646020057307828709587969646701361764263 (77 digits)
11 
12 no P-1/P+1/ECM available, skipping
13 
14 commencing quadratic sieve (77-digit input)
15 
16 using multiplier of 7
17 
18 using generic 32kb sieve core
19 
20 sieve interval: 12 blocks of size 32768
21 
22 processing polynomials in batches of 17
23 
24 using a sieve bound of 921409 (36471 primes)
25 
26 using large prime bound of 92140900 (26 bits)
27 
28 using trial factoring cutoff of 26 bits
29 
30 polynomial A values have 10 factors
31 
32 restarting with 19759 full and 186503 partial relations
33 
34 
35 36750 relations (19759 full + 16991 combined from 186503 partial), need 36567
36 
37 sieving complete, commencing postprocessing
38 
39 begin with 206262 relations
40 
41 reduce to 51619 relations in 2 passes
42 
43 attempting to read 51619 relations
44 
45 recovered 51619 relations
46 
47 recovered 38442 polynomials
48 
49 attempting to build 36750 cycles
50 
51 found 36750 cycles in 1 passes
52 
53 distribution of cycle lengths:
54 
55 length 1 : 19759
56 
57 length 2 : 16991
58 
59 largest cycle: 2 relations
60 
61 matrix is 36471 x 36750 (5.3 MB) with weight 1099597 (29.92/col)
62 
63 sparse part has weight 1099597 (29.92/col)
64 
65 filtering completed in 4 passes
66 
67 matrix is 24901 x 24965 (4.0 MB) with weight 837672 (33.55/col)
68 
69 sparse part has weight 837672 (33.55/col)
70 
71 saving the first 48 matrix rows for later
72 
73 matrix includes 64 packed rows
74 
75 matrix is 24853 x 24965 (2.6 MB) with weight 610638 (24.46/col)
76 
77 sparse part has weight 441218 (17.67/col)
78 
79 commencing Lanczos iteration
80 
81 memory use: 2.7 MB
82 
83 lanczos halted after 394 iterations (dim = 24853)
84 
85 recovered 18 nontrivial dependencies
86 
87 p39 factor: 258631601377848992211685134376492365269------------------->p
88 
89 p39 factor: 286924040788547268861394901519826758027------------------->q
90 
91 elapsed time 00:00:10
92 
93 [email protected]:~/download/iscc-ctf/RSA$

 

3.使用脚本来生成私钥文件(修改红色部分)

 

 1 import math
 2 
 3 import sys
 4 
 5 from Crypto.PublicKey import RSA
 6 
 7 
 8 keypair = RSA.generate(1024)
 9 
10 
11 keypair.p = 258631601377848992211685134376492365269           #msieve求解的p
12 
13 keypair.q = 286924040788547268861394901519826758027         #msieve求解的q     
14 
15 keypair.e = 65537                                             #分解出的e
16 
17 
18 keypair.n = keypair.p * keypair.q
19 
20 Qn = long((keypair.p-1) * (keypair.q-1))
21 
22 
23 i = 1
24 
25 while (True):
26 
27 x = (Qn * i ) + 1
28 
29 if (x % keypair.e == 0):
30 
31 keypair.d = x / keypair.e
32 
33 break
34 
35 i += 1
36 
37 
38 private = open(private.pem,w)
39 
40 private.write(keypair.exportKey())
41 
42 private.close()

 


4.使用生成的privete.pem私钥文件对密文解密

 

1  openssl rsautl -decrypt -in flag.enc -inkey private.pem -out flag

 

 

 

 

附录:

1.linux下安装msieve

sourceforgot上下载软件源代码包:

https://sourceforge.net/projects/msieve/

解压后

 1 $ cd msieve-code/
 2 
 3 $make
 4 
 5 to build:
 6 
 7 make all
 8 
 9 add WIN=1 if building on windows
10 
11 add WIN64=1 if building on 64-bit windows
12 
13 add ECM=1 if GMP-ECM is available (enables ECM)
14 
15 add CUDA=1 for Nvidia graphics card support
16 
17 add MPI=1 for parallel processing using MPI
18 
19 add BOINC=1 to add BOINC wrapper
20 
21 add NO_ZLIB=1 if you dont have zlib
22 
23 $ make all ECM=1 #根据自己的配置进行选择

 

应该会报错gmp.h不存在,安装高精度数学库就可以啦。


2.linux安装gmp(高精度数学库) 

环境:ubuntu 17.04

源代码:https://gmplib.org/


下载gmp-5.0.1的源代码,解压至gmp-5.0.1目录。
su
切换至超级用户权限。
./configure --prefix=/usr  --enable-cxx

提示:
checking for suitable m4… configure: error:
 No usable m4 in $PATH or /usr/5bin (see config.log for reasons).
根据提示查看config.log日志文件,发现文件太大,何处找原因呢?
没有办法,直接google搜索上面的英文提示。
居然马上就找到了资料解决这个问题,原来是缺少m4软件包。
查了一下m4是一个通用的宏处理器,由Brian Kernighan Dennis Ritchie设计。
apt-get install build-essential m4
安装完毕,其中的build-essentialubuntu下用来解决安装g++/gcc编译环境依赖关系的软件包。

开始编译,安装gmp数学库。

1 ./configure --prefix=/usr  --enable-cxx
2 make
3 make check 
4 make install 

 

 

 

参考资料:

  1.256-bitRSA破解-实验吧 

  2.[翻译]初学者向导―GGNFS和MSIEVE分解因数-『外文翻译』-看雪安全论坛:http://bbs.pediy.com/thread-156206.htm

  3.ubuntu10.4下安装和使用GMP高精度数学库:http://blog.csdn.net/bingqingsuimeng/article/details/12748341

以上是关于通过SSH,使用Public-Key Infrastructure (PKI)认证,怎么配置登陆Linux服务器的主要内容,如果未能解决你的问题,请参考以下文章

SSH基本简介及连接交互过程

向一个GitHub repository添加协作者

springcloud 定义切面实现对请求操作记录日志,方便后面分析接口详情

通过公钥解密密文思路(256bits RSA)

JavaJava与数字证书

如何用Java读取使用证书