图像处理之三种常见双立方插值算法
Posted mydddfly
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了图像处理之三种常见双立方插值算法相关的知识,希望对你有一定的参考价值。
http://blog.csdn.net/jia20003/article/details/40020775
图像处理之三种常见双立方插值算法
双立方插值计算涉及到16个像素点,其中(i’, j’)表示待计算像素点在源图像中的包含
小数部分的像素坐标,dx表示X方向的小数坐标,dy表示Y方向的小数坐标。具体
可以看下图:
根据上述图示与双立方插值的数学表达式可以看出,双立方插值本质上图像16个像素点
权重卷积之和作为新的像素值。
其中R(x)表示插值表达式,可以根据需要选择的表达式不同。常见有基于三角取值、Bell
分布表达、B样条曲线表达式。
1. 基于三角形采样数学公式为
最简单的线性分布,代码实现如下:
- private double triangleInterpolation( double f )
- {
- f = f / 2.0;
- if( f < 0.0 )
- {
- return ( f + 1.0 );
- }
- else
- {
- return ( 1.0 - f );
- }
- }
2.基于Bell分布采样的数学公式如下:
Bell分布采样数学公式基于三次卷积计算实现。代码实现如下:
- private double bellInterpolation( double x )
- {
- double f = ( x / 2.0 ) * 1.5;
- if( f > -1.5 && f < -0.5 )
- {
- return( 0.5 * Math.pow(f + 1.5, 2.0));
- }
- else if( f > -0.5 && f < 0.5 )
- {
- return 3.0 / 4.0 - ( f * f );
- }
- else if( ( f > 0.5 && f < 1.5 ) )
- {
- return( 0.5 * Math.pow(f - 1.5, 2.0));
- }
- return 0.0;
- }
3.基于B样条曲线采样的数学公式如下:
是一种基于多项式的四次卷积的采样计算,代码如下:
- private double bspLineInterpolation( double f )
- {
- if( f < 0.0 )
- {
- f = -f;
- }
- if( f >= 0.0 && f <= 1.0 )
- {
- return ( 2.0 / 3.0 ) + ( 0.5 ) * ( f* f * f ) - (f*f);
- }
- else if( f > 1.0 && f <= 2.0 )
- {
- return 1.0 / 6.0 * Math.pow( ( 2.0 - f ), 3.0 );
- }
- return 1.0;
- }
实现图像双立方插值的完整源代码如下:
- package com.gloomyfish.zoom.study;
- import java.awt.image.BufferedImage;
- import java.awt.image.ColorModel;
- import com.gloomyfish.filter.study.AbstractBufferedImageOp;
- public class BicubicInterpolationFilter extends AbstractBufferedImageOp {
- public final static int TRIANGLE__INTERPOLATION = 1;
- public final static int BELL__INTERPOLATION = 2;
- public final static int BSPLINE__INTERPOLATION = 4;
- public final static int CATMULLROOM__INTERPOLATION = 8;
- public final static double B = 0.0;
- public final static double C = 0.5; // constant
- private int destH; // zoom height
- private int destW; // zoom width
- private int type;
- public BicubicInterpolationFilter()
- {
- this.type = BSPLINE__INTERPOLATION;
- }
- public void setType(int type) {
- this.type = type;
- }
- public void setDestHeight(int destH) {
- this.destH = destH;
- }
- public void setDestWidth(int destW) {
- this.destW = destW;
- }
- private double bellInterpolation( double x )
- {
- double f = ( x / 2.0 ) * 1.5;
- if( f > -1.5 && f < -0.5 )
- {
- return( 0.5 * Math.pow(f + 1.5, 2.0));
- }
- else if( f > -0.5 && f < 0.5 )
- {
- return 3.0 / 4.0 - ( f * f );
- }
- else if( ( f > 0.5 && f < 1.5 ) )
- {
- return( 0.5 * Math.pow(f - 1.5, 2.0));
- }
- return 0.0;
- }
- private double bspLineInterpolation( double f )
- {
- if( f < 0.0 )
- {
- f = -f;
- }
- if( f >= 0.0 && f <= 1.0 )
- {
- return ( 2.0 / 3.0 ) + ( 0.5 ) * ( f* f * f ) - (f*f);
- }
- else if( f > 1.0 && f <= 2.0 )
- {
- return 1.0 / 6.0 * Math.pow( ( 2.0 - f ), 3.0 );
- }
- return 1.0;
- }
- private double triangleInterpolation( double f )
- {
- f = f / 2.0;
- if( f < 0.0 )
- {
- return ( f + 1.0 );
- }
- else
- {
- return ( 1.0 - f );
- }
- }
- private double CatMullRomInterpolation( double f )
- {
- if( f < 0.0 )
- {
- f = Math.abs(f);
- }
- if( f < 1.0 )
- {
- return ( ( 12 - 9 * B - 6 * C ) * ( f * f * f ) +
- ( -18 + 12 * B + 6 *C ) * ( f * f ) +
- ( 6 - 2 * B ) ) / 6.0;
- }
- else if( f >= 1.0 && f < 2.0 )
- {
- return ( ( -B - 6 * C ) * ( f * f * f )
- + ( 6 * B + 30 * C ) * ( f *f ) +
- ( - ( 12 * B ) - 48 * C ) * f +
- 8 * B + 24 * C)/ 6.0;
- }
- else
- {
- return 0.0;
- }
- }
- @Override
- public BufferedImage filter(BufferedImage src, BufferedImage dest) {
- int width = src.getWidth();
- int height = src.getHeight();
- if (dest == null)
- dest = createCompatibleDestImage(src, null);
- int[] inPixels = new int[width * height];
- int[] outPixels = new int[destH * destW];
- getRGB(src, 0, 0, width, height, inPixels);
- float rowRatio = ((float) height) / ((float) destH);
- float colRatio = ((float) width) / ((float) destW);
- int index = 0;
- for (int row = 0; row < destH; row++) {
- int ta = 0, tr = 0, tg = 0, tb = 0;
- double srcRow = ((float) row) * rowRatio;
- // 获取整数部分坐标 row Index
- double j = Math.floor(srcRow);
- // 获取行的小数部分坐标
- double t = srcRow - j;
- for (int col = 0; col < destW; col++) {
- double srcCol = ((float) col) * colRatio;
- // 获取整数部分坐标 column Index
- double k = Math.floor(srcCol);
- // 获取列的小数部分坐标
- double u = srcCol - k;
- double[] rgbData = new double[3];
- double rgbCoffeData = 0.0;
- for(int m=-1; m<3; m++)
- {
- for(int n=-1; n<3; n++)
- {
- int[] rgb = getPixel(j+m, k+n, width, height, inPixels);
- double f1 = 0.0d;
- double f2 = 0.0d;
- if(type == TRIANGLE__INTERPOLATION)
- {
- f1 = triangleInterpolation( ((double) m ) - t );
- f2 = triangleInterpolation ( -(( (double) n ) - u ) );
- }
- else if(type == BELL__INTERPOLATION)
- {
- f1 = bellInterpolation( ((double) m ) - t );
- f2 = bellInterpolation ( -(( (double) n ) - u ) );
- }
- else if(type == BSPLINE__INTERPOLATION)
- {
- f1 = bspLineInterpolation( ((double) m ) - t );
- f2 = bspLineInterpolation ( -(( (double) n ) - u ) );
- }
- else
- {
- f1 = CatMullRomInterpolation( ((double) m ) - t );
- f2 = CatMullRomInterpolation ( -(( (double) n ) - u ) );
- }
- // sum of weight
- rgbCoffeData += f2*f1;
- // sum of the RGB values
- rgbData[0] += rgb[0] * f2 * f1;
- rgbData[1] += rgb[1] * f2 * f1;
- rgbData[2] += rgb[2] * f2 * f1;
- }
- }
- ta = 255;
- // get Red/green/blue value for sample pixel
- tr = (int) (rgbData[0]/rgbCoffeData);
- tg = (int) (rgbData[1]/rgbCoffeData);
- tb = (int) (rgbData[2]/rgbCoffeData);
- index = row * destW + col;
- outPixels[index] = (ta << 24) | (clamp(tr) << 16)
- | (clamp(tg) << 8) | clamp(tb);
- }
- }
- setRGB(dest, 0, 0, destW, destH, outPixels);
- return dest;
- }
- public int clamp(int value) {
- return value > 255 ? 255 :
- (value < 0 ? 0 : value);
- }
- private int[] getPixel(double j, double k, int width, int height,
- int[] inPixels) {
- int row = (int) j;
- int col = (int) k;
- if (row >= height) {
- row = height - 1;
- }
- if (row < 0) {
- row = 0;
- }
- if (col < 0) {
- col = 0;
- }
- if (col >= width) {
- col = width - 1;
- }
- int index = row * width + col;
- int[] rgb = new int[3];
- rgb[0] = (inPixels[index] >> 16) & 0xff;
- rgb[1] = (inPixels[index] >> 8) & 0xff;
- rgb[2] = inPixels[index] & 0xff;
- return rgb;
- }
- public BufferedImage createCompatibleDestImage(
- BufferedImage src, ColorModel dstCM) {
- if ( dstCM == null )
- dstCM = src.getColorModel();
- return new BufferedImage(dstCM,
- dstCM.createCompatibleWritableRaster(destW, destH),
- dstCM.isAlphaPremultiplied(), null);
- }
- }
运行效果:原图
双立方插值放大以后:
总结:
基于这里三种方法实现的双立方插值以后图片跟原图像相比,都有一定模糊
这里时候可以通过后续处理实现图像锐化与对比度提升即可得到Sharpen版本
当然也可以通过寻找更加合适的R(x)函数来实现双立方卷积插值过程时保留
图像边缘与对比度。
以上是关于图像处理之三种常见双立方插值算法的主要内容,如果未能解决你的问题,请参考以下文章
图像缩放算法(最临近点插值算法双线性内插值算法双立方插值算法)
图像去噪基于matlab双立方插值和稀疏表示图像去噪含Matlab源码 2009期
图像处理中的“内插”是什么?插值图像内插值图像间插值重取样(用已知数据来估计未知位置的数值的处理)(最近邻内插法双线性内插)
图像处理中的“内插”是什么?插值图像内插值图像间插值重取样(用已知数据来估计未知位置的数值的处理)(最近邻内插法双线性内插)