HDU 4638 莫队算法

Posted 半根毛线code

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDU 4638 莫队算法相关的知识,希望对你有一定的参考价值。

Group

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2483    Accepted Submission(s): 1272


Problem Description
There are n men ,every man has an ID(1..n).their ID is unique. Whose ID is i and i-1 are friends, Whose ID is i and i+1 are friends. These n men stand in line. Now we select an interval of men to make some group. K men in a group can create K*K value. The value of an interval is sum of these value of groups. The people of same group‘s id must be continuous. Now we chose an interval of men and want to know there should be how many groups so the value of interval is max.
 

 

Input
First line is T indicate the case number.
For each case first line is n, m(1<=n ,m<=100000) indicate there are n men and m query.
Then a line have n number indicate the ID of men from left to right.
Next m line each line has two number L,R(1<=L<=R<=n),mean we want to know the answer of [L,R].
 

 

Output
For every query output a number indicate there should be how many group so that the sum of value is max.
 

 

Sample Input
1
5 2
3 1 2 5 4
1 5
2 4
 

 

Sample Output
1
2
 

 

Source
 题意:t组数据 给你一个长度为n的序列 m个询问[l,r] 问 l到r 的值可以组成多少个连续的段 
 题解:例如序列3 1 2 5 4  
查询 [1,5]  值为{1,2,3,4,5}  只有一个连续的段
查询 [2,4] 值为{1,2} {5} 有两个连续的段
莫队处理;
 
 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cmath>
 4 #include<cstring>
 5 #include<algorithm>
 6 #include<map>
 7 #include<queue>
 8 #include<stack>
 9 #include<vector>
10 #include<set>
11 #define ll __int64
12 using namespace std;
13 int n,m;
14 struct node
15 {
16     int l,r,id;
17 } N[100005];
18 int p[100005];
19 int block;
20 int a[100005];
21 int x[100005];
22 int mp[100005];
23 ll ans=0;
24 ll re[100005];
25 int cmp(struct node aa,struct node bb)
26 {
27     if(p[aa.l]==p[bb.l])
28         return  aa.r<bb.r;
29     else
30         return p[aa.l]<p[bb.l];
31 }
32 void update(int w,int h)
33 {
34     if(h==1)
35     {
36         mp[a[w]]=1;
37         if(mp[a[w]-1]==0&&mp[a[w]+1]==0)
38             ans++;
39         if(mp[a[w]-1]==1&&mp[a[w]+1]==1)
40             ans--;
41     }
42     else
43     {
44         mp[a[w]]=0;
45         if(mp[a[w]-1]==1&&mp[a[w]+1]==1)
46             ans++;
47         if(mp[a[w]-1]==0&&mp[a[w]+1]==0)
48             ans--;
49     }
50 }
51 int t;
52 int main()
53 {
54     scanf("%d",&t);
55     for(int o=1;o<=t;o++)
56     {
57         for(int i=0;i<100004;i++)
58             mp[i]=0;
59         scanf("%d %d",&n,&m);
60         for(int i=1; i<=n; i++)
61             scanf("%d",&a[i]);
62         for(int i=1; i<=m; i++)
63         {
64             scanf("%d %d",&N[i].l,&N[i].r);
65             N[i].id=i;
66         }
67         block=(int)sqrt((double)n);
68         for(int i=1; i<=n; i++)
69             p[i]=(i-1)/block+1;
70         sort(N+1,N+1+m,cmp);
71         ans=0;
72         for(int i=1,l=1,r=0; i<=m; i++)
73         {
74             for(; r<N[i].r; r++) update(r+1,1);
75             for(; l>N[i].l; l--) update(l-1,1);
76             for(; r>N[i].r; r--) update(r,-1);
77             for(; l<N[i].l; l++) update(l,-1);
78             re[N[i].id]=ans;
79         }
80         for(int i=1; i<=m; i++)
81             printf("%I64d\n",re[i]);
82     }
83     return 0;
84 }

 

以上是关于HDU 4638 莫队算法的主要内容,如果未能解决你的问题,请参考以下文章

HDU4638:Group(线段树离线处理)

HDU 5145 NPY and girls(莫队算法+乘法逆元)

区间的关系的计数 HDU 4638 离线+树状数组

hdu 5273 Dylans loves sequence(区间逆序对数-莫队算法)

(预处理+莫队算法)HDU - 5381 The sum of gcd

hdu 5381 The sum of gcd 2015多校联合训练赛#8莫队算法