TreeMap理解

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了TreeMap理解相关的知识,希望对你有一定的参考价值。

参考技术A jdk:1.8

本文将介绍java中集合框架中实现 Map 接口 TreeMap , TreeMap 实现 map 接口提供根据元素 key 自然排序或使用自定义排序规则来存储元素,之前文章有介绍 HashMap 和 LinkedHashMap ,可以对比来查看有些地方是相似,建议查看本文之前阅读之前介绍文章

TreeMap 元素默认排序是按照自然排序,对于 Integer 是按照升序,对于字符按照字母顺序,下面例子:

上面增加key是无序,但是返回key的 set 是有升序,同时使用字符串,存储是自然序-字母顺序

下面是例子:

TreeMap 不像 hash map 和linked hash map,不需要hash来定位元素位置,因为没有使用数组来存储元素

如果自然排序不能满足需求,初始化时候可以自定义排序规则,下面例子使用 Integer 降序排列:

hashMap 不能保证key排序存储和出现相同排序,但是 TreeMap 可以保证key总是有序性存储

现在已经知道TreeMap存储元素是有序,因为 TreeMap 属性,可以查询最大,最小,查找key小于或者大于固定值,等等,下面介绍小部分情况例子:

TreeMap 实现 NavigableMap 接口和内部工作规则使用红黑树:

红黑树超过了本文介绍访问,然而这些key存储是有序

首先:红黑数保证元素数据结构一致性,可以想象是棵芒果树在天空下,树上分支向下成长,树的根节点元素是第一个节点,从根节点出发,任何元素左节点小于中间节点,右节点大于中间节点,定义大于或者小于自然排序或者自定义排序初始化时候,这个规则保证 TreeMap 元素总是有序和可以预测顺序

第二:红黑树是自平衡树,以上属性保证基本操作,例如:搜索 、获取、增加、和删除时间复杂度是O(log n),在增加和删除过程中,会改变树形状,树的长分支搜索需要时间比较长,短分支需要时间短, TreeMap 自平衡保证红黑树特性,不会使上面情况发生,因此考虑到使用红黑树设计,对每次删除和插入,最大树高度被维持需要时间复杂度O(log n),例如 树自平衡,

上面hash map 和linked hash map,tree map不是线程安全,因此多线程环境处理方式和之前讲相似

之前介绍 HashMap 和 LinkedHashMap 实现,现在是 TreeMap ,很重要概况下它们三者之区别:

HashMap 适合一般场景,实现提供存储和 获取操作,缺点是存放元素是无序和,在排序场景 性能低下,需要遍历所有元素来进行排序

TreeMap 完全自己控制key` 排序,在另一方面,性能会比其他性能差

TreeMap 在没有引起性能问题情况下,linked hash map提高hash map排序问题

本文讨论 java 中 TreeMap 和内部实现,因此最后一系列文章中讨论共同 map 接口实现,简单讨论

之间优缺点使用情况

JDK集合 TreeMap

TreeMap是JDK中一种排序的数据结构。在这一篇里,我们将分析TreeMap的数据结构,深入理解它的排序能力是如何实现的。这一节要有一定的数据结构基础,在阅读下面的之前,推荐大家先看一下:《算法4》深入理解红黑树。(这里介绍的红黑树实现:从2-3树到红黑树的过渡很清晰,虽然源码里的实现不是这种方式 T^T),先了解一下红黑树的由来以及它的特性,这样能更好的理解TreeMap的实现。

TreeMap的结构

TreeMap的内部实现就是一个红黑树。

技术分享图片

对于红黑树的定义:

  1. 节点是红色或黑色。
  2. 根是黑色。
  3. 所有叶子都是黑色(叶子是NIL节点)。
  4. 每个红色节点必须有两个黑色的子节点。(从每个叶子到根的所有路径上不能有两个连续的红色节点。)
  5. 从任一节点到其每个叶子的所有简单路径都包含相同数目的黑色节点。

TreeMap的成员变量

public class TreeMap<K,V> extends AbstractMap<K,V>
    implements NavigableMap<K,V>, Cloneable, java.io.Serializable {
    // Key的比较器,用作排序
    private final Comparator<? super K> comparator;
    // 树的根节点
    private transient Entry<K,V> root;
    // 树的大小
    private transient int size = 0;
    // 修改计数器
    private transient int modCount = 0;
    // 返回map的Entry视图
    private transient EntrySet entrySet;
    private transient KeySet<K> navigableKeySet;
    private transient NavigableMap<K,V> descendingMap;
    // 定义红黑树的颜色
    private static final boolean RED   = false;
    private static final boolean BLACK = true;
   
}

TreeMap的构造方法

public TreeMap(Comparator<? super K> comparator) {
   this.comparator = comparator;
}

允许用户自定义比较器进行key的排序。

public TreeMap(Map<? extends K, ? extends V> m) {
  comparator = null;
  putAll(m);
}
 
public void putAll(Map<? extends K, ? extends V> map) {
  int mapSize = map.size();
  //判断map是否SortedMap,不是则采用AbstractMap的putAll
  if (size==0 && mapSize!=0 && map instanceof SortedMap) {
    Comparator<?> c = ((SortedMap<?,?>)map).comparator();
    //同为null或者不为null,类型相同,则进入有序map的构造
    if (c == comparator || (c != null && c.equals(comparator))) {
      ++modCount;
      try {
        buildFromSorted(mapSize, map.entrySet().iterator(),
                        null, null);
      } catch (java.io.IOException cannotHappen) {
      } catch (ClassNotFoundException cannotHappen) {
      }
      return;
    }
  }
  super.putAll(map);
}

buildFromSorted将在后面解析,因为后面的构造函数也调用了这个方法。

public TreeMap(SortedMap<K, ? extends V> m) {
  comparator = m.comparator();
  try {
    buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
  } catch (java.io.IOException cannotHappen) {
  } catch (ClassNotFoundException cannotHappen) {
  }
}

下面让我们来看一下这个buildFromSorted方法:

/**
* size: map里键值对的数量
* it: 传入的map的entries迭代器
* str: 如果不为空,则从流里读取key-value
* defaultVal:见名知意,不为空,则value都用这个值
*/
private void buildFromSorted(int size, Iterator<?> it,
                                 java.io.ObjectInputStream str,
                                 V defaultVal)
  throws  java.io.IOException, ClassNotFoundException {
  this.size = size;
  root = buildFromSorted(0, 0, size-1, computeRedLevel(size),
                         it, str, defaultVal);
}

我们先来分析一下computeRedLevel方法:

private static int computeRedLevel(int sz) {
  int level = 0;
  for (int m = sz - 1; m >= 0; m = m / 2 - 1)
    level++;
  return level;
}

它的作用是用来计算完全二叉树的层数。什么意思呢,先来看一下下面的图:

技术分享图片

把根结点索引看为0,那么高度为2的树的最后一个节点的索引为2,类推高度为3的最后一个节点为6,满足 m = (m + 1) * 2 。那么计算这个高度有什么好处呢,如上图,如果一个树有9个节点,那么我们构造红黑树的时候,只要把前面3层的结点都设置为黑色,第四层的节点设置为红色,则构造完的树,就是红黑树,满足前面提到的红黑树的5个条件。而实现的关键就是找到要构造树的完全二叉树的层数。

了解了上面的原理,后面就简单了,接着来看buildFromSorted方法:

/**
* level: 当前树的层数,注意:是从0层开始
* lo: 子树第一个元素的索引
* hi: 子树最后一个元素的索引
* redLevel: 上述红节点所在层数
* 剩下的3个就不解释了,跟上面的一样
*/
@SuppressWarnings("unchecked")
private final Entry<K,V> buildFromSorted(int level, int lo, int hi,
                                         int redLevel,
                                         Iterator<?> it,
                                         java.io.ObjectInputStream str,
                                         V defaultVal)
  throws  java.io.IOException, ClassNotFoundException {
  // hi >= lo 说明子树已经构造完成
  if (hi < lo) return null;
  // 取中间位置,无符号右移,相当于除2
  int mid = (lo + hi) >>> 1;
  Entry<K,V> left  = null;
  //递归构造左结点
  if (lo < mid)
    left = buildFromSorted(level+1, lo, mid - 1, redLevel,
                           it, str, defaultVal);
  K key;
  V value;
  // 通过迭代器获取key, value
  if (it != null) {
    if (defaultVal==null) {
      Map.Entry<?,?> entry = (Map.Entry<?,?>)it.next();
      key = (K)entry.getKey();
      value = (V)entry.getValue();
    } else {
      key = (K)it.next();
      value = defaultVal;
    }
  // 通过流来读取key, value
  } else {
    key = (K) str.readObject();
    value = (defaultVal != null ? defaultVal : (V) str.readObject());
  }
  //构建结点
  Entry<K,V> middle =  new Entry<>(key, value, null);
  // level从0开始的,所以上述9个节点,计算出来的是3,实际上就是代表的第4层
  if (level == redLevel)
    middle.color = RED;
  //如果存在的话,设置左结点,
  if (left != null) {
    middle.left = left;
    left.parent = middle;
  }
  // 递归构造右结点
  if (mid < hi) {
    Entry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel,
                                       it, str, defaultVal);
    middle.right = right;
    right.parent = middle;
  }
  return middle;
}

另外提一句,buildFromSorted能这么构造是因为这是一个已经排序的map。
具体的构造顺序如下图(偷懒画了个简单的 ):

技术分享图片

若感兴趣可以自己分析一下上面9个节点的是如何构造的。

TreeMap的重要方法

get(Object key)

对于map来说,根据key来获取value几乎是最常见的操作,下面我们来看一下:

public V get(Object key) {
  //内部调用了getEntry方法。
  Entry<K,V> p = getEntry(key);
  return (p==null ? null : p.value);
}
 
final Entry<K,V> getEntry(Object key) {
  // 如果有比较器,则调用通过比较器的来比较key的方法
  if (comparator != null)
    return getEntryUsingComparator(key);
  if (key == null)
    throw new NullPointerException();
  @SuppressWarnings("unchecked")
  // 获取key的Comparable接口
  Comparable<? super K> k = (Comparable<? super K>) key;
  //从根结点开始比较,根据二叉树的形式,小的往左树找,大的往右树找,直到找到返回
  Entry<K,V> p = root;
  while (p != null) {
    int cmp = k.compareTo(p.key);
    if (cmp < 0)
      p = p.left;
    else if (cmp > 0)
      p = p.right;
    else
      return p;
  }
  return null;
}

 

对于 Comparable<? super K> k = (Comparable<? super K>) key; ,笔者一开始的时候在想为什么用<? super K>,用<? extends K>不行吗,不是根据PECS(Producer Extends, Consumer Super)原则,取出来的时候用extends吗。后来发现太傻了 T^T,这一原则是用来针对list的。这里肯定是用super,用K或者K的父类的compareTo方法。如果用extends的话,K的子类加了其他属性进行比较,那就根本没法进行比较了。

至于getEntryUsingComparator方法就不分析了,就是把compareTo变成了用Comparator进行比较,感兴趣可以自己看看。

put(K key, V value)

public V put(K key, V value) {
  Entry<K,V> t = root;
  //根结点为空,则进行添加根结点并初始化参数
  if (t == null) {
    //用来进行类型检查
    compare(key, key);
    root = new Entry<>(key, value, null);
    size = 1;
    modCount++;
    return null;
  }
  int cmp;
  Entry<K,V> parent;
  // 与get类型,分离comparator与comparable的比较
  Comparator<? super K> cpr = comparator;
  if (cpr != null) {
    //循环查找key,如果找到则替换value,没有则记录其parent,后面进行插入
    do {
      parent = t;
      cmp = cpr.compare(key, t.key);
      if (cmp < 0)
        t = t.left;
      else if (cmp > 0)
        t = t.right;
      else
        return t.setValue(value);
    } while (t != null);
  }
  else {
    if (key == null)
      throw new NullPointerException();
    @SuppressWarnings("unchecked")
    Comparable<? super K> k = (Comparable<? super K>) key;
    //循环查找key,如果找到则替换value,没有则记录其parent,后面进行插入
    do {
      parent = t;
      cmp = k.compareTo(t.key);
      if (cmp < 0)
        t = t.left;
      else if (cmp > 0)
        t = t.right;
      else
        return t.setValue(value);
    } while (t != null);
  }
  //创建结点,然后比较与parent的大小,小放在左结点,大放在右节点
  Entry<K,V> e = new Entry<>(key, value, parent);
  if (cmp < 0)
    parent.left = e;
  else
    parent.right = e;
  //对红黑树进行修复
  fixAfterInsertion(e);
  size++;
  modCount++;
  return null;
}

put的逻辑还是比较清晰的,关键在于fixAfterInsertion对插入结点后的红黑树进行修复,维护其平衡,我们接着来看看它是如何实现的(在继续看之前,建议先去了解一下左旋转和右旋转的操作)。

private void fixAfterInsertion(Entry<K,V> x) {
  //约定插入的结点都是红节点
  x.color = RED;
  //x本身红色,如果其父节点也是红色,违反规则4,进行循环处理
  while (x != null && x != root && x.parent.color == RED) {
    //父节点是左结点
    if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
      //获取父节点的右兄弟y
      Entry<K,V> y = rightOf(parentOf(parentOf(x)));
      //p为左结点,y为红色 ①
      if (colorOf(y) == RED) {
        setColor(parentOf(x), BLACK);
        setColor(y, BLACK);
        setColor(parentOf(parentOf(x)), RED);
        x = parentOf(parentOf(x));
      } else {
        // p为左结点,y为黑,x为右节点 ②
        if (x == rightOf(parentOf(x))) {
          x = parentOf(x);
          rotateLeft(x);
        }
        // p为左结点,y为红,x为左结点 ③
        setColor(parentOf(x), BLACK);
        setColor(parentOf(parentOf(x)), RED);
        rotateRight(parentOf(parentOf(x)));
      }
    //父节点是右结点  
    } else {
      Entry<K,V> y = leftOf(parentOf(parentOf(x)));
      //p为右结点,y为红色 ④
      if (colorOf(y) == RED) {
        setColor(parentOf(x), BLACK);
        setColor(y, BLACK);
        setColor(parentOf(parentOf(x)), RED);
        x = parentOf(parentOf(x));
      } else {
        //p为右结点,y为黑色,x为左结点 ⑤
        if (x == leftOf(parentOf(x))) {
          x = parentOf(x);
          rotateRight(x);
        }
        //p为右结点,y为黑色,x为右结点 ⑥
        setColor(parentOf(x), BLACK);
        setColor(parentOf(parentOf(x)), RED);
        rotateLeft(parentOf(parentOf(x)));
      }
    }
  }
  //约定根结点都是黑节点
  root.color = BLACK;
}

总结一下有这么几种情况:

  1. 由于p为红,则x没有兄弟结点(原则4),要想插入后维持红黑树平衡,必须从p,pp以及p的兄弟结点y中找到对应的处理情况来平衡;
  2. 首先,插入的结点x,颜色肯定是红色,插入位置两种情况——左结点或者右结点;
  3. 其次,父结点p肯定为红色,因为父节点p为黑色的话,那就不用调整了(插入红节点对原则五并没有印象),所以只有父结点p是左结点和右结点的两种情况;
  4. 既然父结点p为红色,那么父父结点pp肯定为黑色(根据原则四),那么p的兄弟节点y,存在两种情况,颜色为红或者黑。

所以综上,x插入要调整的所有情况有:2 * 2 * 2 = 8种,但是当y为红色的时候不用调整,不需要考虑x的插入位置,所以8 - 2 = 6种,且只要懂三种就够了,剩余的是左右对称的。至于为什么要这么处理这里就不展开了。感兴趣的园友们可以推荐这篇看一下:红黑树的插入操作

至于左旋转和右旋转就不拿出来分析了。

remove(Object key)

最后我们再来看一下remove方法:

public V remove(Object key) {
  //获取Entry
  Entry<K,V> p = getEntry(key);
  if (p == null)
    return null;
  V oldValue = p.value;
  //删除的关键方法
  deleteEntry(p);
  return oldValue;
}

在看deleteEntry之前,我们先来看一下successor方法,为其做准备:

//查找t的后继结点
static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
  if (t == null)
    return null;
  //从t的右子树中找到最小的
  else if (t.right != null) {
    Entry<K,V> p = t.right;
    while (p.left != null)
      p = p.left;
    return p;
  //当右子树为空时,向上找到第一个左父节点
  } else {
    Entry<K,V> p = t.parent;
    Entry<K,V> ch = t;
    while (p != null && ch == p.right) {
      ch = p;
      p = p.parent;
    }
    return p;
  }
}

上述的目的是找到最接近且大于t的结点,这样的话,直接用来替换掉t,对原有的树结构变动最小。

private void deleteEntry(Entry<K,V> p) {
  modCount++;
  size--;
  //① p的左右子树都不为空,找到右子树中最小的结点,将key、value赋给p,然后p指向后继结点
  if (p.left != null && p.right != null) {
    Entry<K,V> s = successor(p);
    p.key = s.key;
    p.value = s.value;
    p = s;
  } 
  //获取p中不为空的结点,也可能两个都是空的
  Entry<K,V> replacement = (p.left != null ? p.left : p.right);
  //① 替换的结点有一个子节点
  if (replacement != null) {
    replacement.parent = p.parent;
    if (p.parent == null)
      root = replacement;
    else if (p == p.parent.left)
      p.parent.left  = replacement;
    else
      p.parent.right = replacement;
    //清空链接,以便可以使用fixAfterDeletion和内存回收
    p.left = p.right = p.parent = null;
    if (p.color == BLACK)
      fixAfterDeletion(replacement);
  // ② 删除的结点是根结点
  } else if (p.parent == null) { 
    root = null;
  // ③ 替换的结点是空节点
  } else {
    if (p.color == BLACK)
      fixAfterDeletion(p);
    if (p.parent != null) {
      if (p == p.parent.left)
        //清空链接,方便GC
        p.parent.left = null;
      else if (p == p.parent.right)
        p.parent.right = null;
      //清空链接,方便GC
      p.parent = null;
    }
  }
}

整体思路是:

  1. 当删除结点p的左右结点都不为空的时候,选择大于且最接近p的后继结点s,直接将s的key、value替换掉p的原有值,然后对后继结点s做删除处理。此时的s必有一个左必为空,做操作2;
  2. 对于有左右结点有一个为空的p时,在不为空的结点replacement,与p的parent之间修改父子节点间引用关系;
  3. 两个结点都是空的就更简单了,直接删掉;
  4. 对于删除的黑色的结点进行fix。

在获取replacement的时候,p的左右结点为空的个数>=1,

  • 没有进前面if条件,则说明p至少有一个为空;
  • 进入if条件,则在p的右树中找最小节点s,s左结点必为空,右结点可能存在。

下面让我们来看一下fixAfterDeletion的源码的源码:

private void fixAfterDeletion(Entry<K,V> x) {
  while (x != root && colorOf(x) == BLACK) {
    //x是左结点且为黑色
    if (x == leftOf(parentOf(x))) {
      //获取兄弟右节点
      Entry<K,V> sib = rightOf(parentOf(x));
      //① 兄弟右节点sib颜色是红色
      if (colorOf(sib) == RED) {
        setColor(sib, BLACK);
        setColor(parentOf(x), RED);
        rotateLeft(parentOf(x));
        sib = rightOf(parentOf(x));
      }
      //② sib的子节点都是黑色
      if (colorOf(leftOf(sib))  == BLACK &&
          colorOf(rightOf(sib)) == BLACK) {
        setColor(sib, RED);
        x = parentOf(x);
      //sib子节点不全为黑
      } else {
        //③ sib右子节点为黑色
        if (colorOf(rightOf(sib)) == BLACK) {
          setColor(leftOf(sib), BLACK);
          setColor(sib, RED);
          rotateRight(sib);
          sib = rightOf(parentOf(x));
        }
        //
        setColor(sib, colorOf(parentOf(x)));
        setColor(parentOf(x), BLACK);
        setColor(rightOf(sib), BLACK);
        rotateLeft(parentOf(x));
        x = root;
      }
    // 对称
    } else {
      Entry<K,V> sib = leftOf(parentOf(x));
 
      if (colorOf(sib) == RED) {
        setColor(sib, BLACK);
        setColor(parentOf(x), RED);
        rotateRight(parentOf(x));
        sib = leftOf(parentOf(x));
      }
 
      if (colorOf(rightOf(sib)) == BLACK &&
          colorOf(leftOf(sib)) == BLACK) {
        setColor(sib, RED);
        x = parentOf(x);
      } else {
        if (colorOf(leftOf(sib)) == BLACK) {
          setColor(rightOf(sib), BLACK);
          setColor(sib, RED);
          rotateLeft(sib);
          sib = leftOf(parentOf(x));
        }
        setColor(sib, colorOf(parentOf(x)));
        setColor(parentOf(x), BLACK);
        setColor(leftOf(sib), BLACK);
        rotateRight(parentOf(x));
        x = root;
      }
    }
  }
  setColor(x, BLACK);
}

fixAfterDeletion总体思路是:由于删除的结点x是黑色,所以在该结点的树上做调整没法使红黑树恢复平衡,所以要依靠x的兄弟结点sib做文章,依靠p结点以及sib和其子结点,将x的黑色结点+1,这里具体就不展开了。感兴趣可以推荐这篇看一下:红黑树的删除操作

 

参考:红黑树 

转载:【JDK1.8】JDK1.8集合源码阅读——TreeMap(二)

 


以上是关于TreeMap理解的主要内容,如果未能解决你的问题,请参考以下文章

JDK集合 TreeMap

Java中HashMap和TreeMap的区别深入理解

JDK1.8JDK1.8集合源码阅读——TreeMap

Java学习笔记5.4.2 Map接口 - TreeMap类

TreeMap源码分析

为啥 TreeMap 中不允许空键?