HDOJ 5409 CRB and Graph 无向图缩块

Posted liguangsunls

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了HDOJ 5409 CRB and Graph 无向图缩块相关的知识,希望对你有一定的参考价值。


无向图缩块后,以n所在的块为根节点,dp找每块中的最大值.

对于每一个桥的答案为两块中的较小的最大值和较小的最大值加1

CRB and Graph

Time Limit: 8000/4000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 113    Accepted Submission(s): 41


Problem Description
A connected, undirected graph of N vertices and M edges is given to CRB.
A pair of vertices (uv) (u < v) is called critical for edge e if and only if u and v become disconnected by removing e.
CRB’s task is to find a critical pair for each of M edges. Help him!
 

Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains two integers NM denoting the number of vertices and the number of edges.
Each of the next M lines contains a pair of integers a and b, denoting an undirected edge between a and b.
1 ≤ T ≤ 12
1 ≤ NM ≤ 105
1 ≤ ab ≤ N
All given graphs are connected.
There are neither multiple edges nor self loops, i.e. the graph is simple.

 

Output
For each test case, output M lines, i-th of them should contain two integers u and v, denoting a critical pair (uv) for the i-th edge in the input.
If no critical pair exists, output "0 0" for that edge.
If multiple critical pairs exist, output the pair with largest u. If still ambiguous, output the pair with smallest v.
 

Sample Input
2 3 2 3 1 2 3 3 3 1 2 2 3 3 1
 

Sample Output
1 2 2 3 0 0 0 0 0 0
 

Author
KUT(DPRK)
 

Source
 




/* ***********************************************
Author        :CKboss
Created Time  :2015年08月22日 星期六 10时24分13秒
File Name     :HDOJ5409.cpp
************************************************ */

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <string>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <set>
#include <map>

using namespace std;

const int maxn=100100;

typedef long long int LL;
typedef pair<int,int> pII;

struct Edge
{
	int from,to,next,id;
}edge[maxn*2];

int Adj[maxn],Size,n,m;

void init()
{
	Size=0; memset(Adj,-1,sizeof(Adj));
}

void Add_Edge(int u,int v,int id)
{
	edge[Size].from=u;
	edge[Size].id=id;
	edge[Size].to=v;
	edge[Size].next=Adj[u];
	Adj[u]=Size++;
}

int Low[maxn],DFN[maxn],Stack[maxn],Belong[maxn];
int Index,top,scc;
bool Instack[maxn],vis[maxn],ve[maxn*2];

void Tarjan(int u,int fa)
{
	int v;
	Low[u]=DFN[u]=++Index;
	Stack[top++]=u;
	Instack[u]=true;

	for(int i=Adj[u];~i;i=edge[i].next)
	{
		v=edge[i].to;
		if(v==fa&&ve[edge[i].id]) continue;
		ve[edge[i].id]=true;
		if(!DFN[v])
		{
			Tarjan(v,u);
			Low[u]=min(Low[u],Low[v]);
		}
		else
		{
			Low[u]=min(Low[u],DFN[v]);
		}
	}
	if(Low[u]==DFN[u])	
	{
		scc++;
		do
		{
			v=Stack[--top];
			Belong[v]=scc;
			Instack[v]=false;
		}while(v!=u);
	}
}

void scc_solve()
{
	memset(DFN,0,sizeof(DFN));
	memset(Instack,0,sizeof(Instack));

	Index=scc=top=0;
	memset(ve,0,sizeof(ve));

	for(int i=1;i<=n;i++)
	{
		if(!DFN[i]) Tarjan(i,i);
	}
}

int value[maxn];
vector<pII> G[maxn];
int ans[maxn][2];
int bian[maxn][2];
int MX[maxn];

void dfs(int u,int fa)
{
	MX[u]=value[u];
	for(int i=0,sz=G[u].size();i<sz;i++)
	{
		int v=G[u][i].first;
		if(v==fa) continue;
		dfs(v,u);
		MX[u]=max(MX[u],MX[v]);
	}
}

int main()
{
	//freopen("in.txt","r",stdin);
	//freopen("out.txt","w",stdout);

	int T_T;
	scanf("%d",&T_T);
	while(T_T--)
	{
		scanf("%d%d",&n,&m);
		init();
		for(int i=0;i<m;i++)
		{
			int a,b;
			scanf("%d%d",&a,&b);
			bian[i][0]=a; bian[i][1]=b;
			Add_Edge(a,b,i); Add_Edge(b,a,i);
		}
		scc_solve();

		/***************REBUILD**********************/

		memset(value,0,sizeof(value));
		memset(ans,0,sizeof(ans));
		int root=0;

		for(int i=1;i<=n;i++)
		{
			G[i].clear();
			int b=Belong[i];
			value[b]=max(value[b],i);
			if(value[b]==n) root=b;
		}

		//for(int i=1;i<=scc;i++) cout<<i<<" value: "<<value[i]<<endl;

		for(int i=0;i<m;i++)
		{
			int u=Belong[bian[i][0]];
			int v=Belong[bian[i][1]];
			if(u==v) continue;
			G[u].push_back(make_pair(v,i)); G[v].push_back(make_pair(u,i));
		}

		dfs(root,root);

		//for(int i=1;i<=scc;i++) { cout<<i<<" mx: "<<MX[i]<<endl; }

		for(int i=0;i<m;i++)
		{
			int u=Belong[bian[i][0]];
			int v=Belong[bian[i][1]];
			if(u==v) 
			{
				puts("0 0"); continue;
			}
			else
			{
				int mx=min(MX[u],MX[v]);
				printf("%d %d\n",mx,mx+1);
			}
		}
	}
    
    return 0;
}




以上是关于HDOJ 5409 CRB and Graph 无向图缩块的主要内容,如果未能解决你的问题,请参考以下文章

hdu 5409 CRB and Graph(边双联通分量)

HDOJ 1009 CRB and String

HDOJ 5414 CRB and String 模拟

HDOJ 5407 CRB and Candies (大犇推导

HDOJ 5411 CRB and Puzzle 矩阵高速幂

转载:HDOJ 5407 CRB and Candies(求1到n的LCM 位图储存结构)